Application of engineering models to predict wake deflection due to a tilted wind turbine

Guntur, Srinivas; Trolldborg, Niels; Gaunaa, Mac

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Application of Engineering Models to Predict Wake Deflection due to a Tilted Wind Turbine

Srinivasa Gunstur, Niels Trolsborg, Mac Gaunaa
DTU Wind Energy, Rise campus, Roskilde-4000, Denmark.

Abstract
It is a known fact that the power produced by wind turbines operating inside an array decreases due to the wake effects of the upstream turbines. It has been proposed previously to use the yaw mechanism as a potential means to steer the upstream wake away from downstream turbines, however such a mechanism introduces control complications due to changing wind directions. Deflecting the wake in the vertical direction using tilt, on the other hand, overcomes this challenge. In this paper, the feasibility of steering wake is explored in a simple uniform inflow case. This is done by trying to model the wake deflection as a function of the yaw/tilt angle and the rotor thrust, initially using the momentum and vortex theories. Thereafter, a relatively more promising empirical model based on a set of actuator disc CFD computations is proposed. Finally, comments are made on the feasibility of wake control using yaw/tilt.

Objectives

1. Assumptions:
 a) The change in the momenta in the y and the x directions are proportional to the rotor thrust force components in the respective directions:
 \[
 \tan \psi = \frac{a_y}{a_x}
 \]
 \[
 \tan \psi = \frac{a_y}{a_x} = a_y(x) / a_x(x)
 \]
 2. Consider a rotor operating in axial flow, has one blade with an infinite TSR, and is lightly loaded. The axial induction along the centerline can be calculated as a function of downstream distance by a simple vortex model assumption [6], as:
 \[
 a_y(x) = \left(\frac{1 - \sqrt{1 - C_T^2}}{2} \right) \left(1 + \frac{x}{\sqrt{R^2 + x^2}} \right)
 \]
 and \(a_y = a_x \tan \psi \)

1. The analytical model does NOT compare well with the CFD data, and therefore assumption (b) is probably invalid. Figure shown is an example case of \(C_T = 0.64, \psi = 30^\circ \).
2. There exists a self similarity in the wake path function. Figure (2) shows all data from \(C_T = \{0.36, 0.64, 0.80, 0.89\} \), and \(\psi = \{50, 100, 200, 300\} \). When this data is normalized as,
 \[
 \hat{y}(x) = \frac{y}{C_T \tan \psi} = 0.24x
 \]
 interestingly results in a self similarity as shown in figure (3). From this, a new relation between \(y, x, C_T \) and \(\psi \) can be written as:
 \[
 y(x, C_T, \psi) = 0.24x C_T \tan \psi
 \]

Results

Figures (5), (6), and (7) show a comparison between the empirical model and the corresponding CFD data in different cases. The model works reasonably well for low tilt angles. As the tilt angle is increased, the deviation between the model and the CFD data starts to grow, for example see figure (8). In any case, the deflection of the wake obtained using even the highest of the \(\psi \) and \(C_T \) values is only menial, and therefore wake control using tilt (or yaw) seems impractical.

Conclusions

- The empirical model is believed to give a reasonable estimate for the wake path function for small tilt angles.
- In theory, it is possible to steer the wake away from a downstream turbine, however the amount of tilt and the distance between the turbines required to accomplish this seem to suggest that this concept is rather impractical.
- Meandering and turbulence effects may dominate at larger downstream distances, which makes the control of the turbine based solely on the current concept a challenge.

References