Conducting 3D-carbon scaffolds induce spontaneous differentiation of human neural stem cells and measure neurotransmitter release in real-time

Amato, Letizia; Schulte, Lars; Heiskanen, Arto; Boisen, Anja; Keller, Stephan Sylvest; Ndoni, Sokol; Emnéus, Jenny

Published in:
Proceedings of the 15th International Conference on Electroanalysis

Publication date:
2014

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Tailoring the structure and the properties of pyrolysed carbon electrodes

Letizia Amato, Lars Schulte, Arto Heiskanen, Anja Boisen, Stephan S. Keller, Sokol Ndoni, Jenny Emnéus

Technical University of Denmark, Department of Micro- and Nanotechnology (leta@nanotech.dtu.dk)

Here we present a study with pyrolysed carbon derived from the photoresist SU-8, polystyrene (PS) and polystyrene-block-polydimethylsiloxane (PS-PDMS) copolymers (Fig. 1) to evaluate them as electrode material. XPS analysis showed that pyrolysed PS-PDMS contains an atomic percentage of 29% silicon. The silicon content may be a limiting factor for obtaining high-conductive structures due to lower carbon content (19%) compared to PS (96%) and SU-8 (98%), but at the same time the silicon is functioning as support for the 3D structure (fig. 1B). Raman spectra of pyrolysed carbon derived from SU-8 photoresist, revealed the presence of the so called D and G peaks (Fig. 1C), indicating that both amorphous and graphitic regions are contributing. The peak intensity ratio of the D and G peaks varies with the microstructural disorder of the carbon matrix \(^1\). From the Raman spectra, the calculated \(I_D/I_G\) is higher for pyrolysed films of PS-PDMS (\(I_D/I_G = 1.1\)) compared to SU-8 and PS (\(I_D/I_G = 1\)), indicating higher microstructural disorder of pyrolysed PS-PDMS. Additionally, the standard rate constant for electron transfer (\(k^0\)) was determined from the experimental \(\Delta E_p\) with the method of Nicholson \(^2\) (table 1). The slower electron transfer kinetics of PS-PDMS compared to PS and SU-8 films may be related to its lower carbon content, as well as to its higher microstructural disorder.

![Figure 1. SEM images of pyrolysed PS (A) and PS-PDMS (B). C) Raman spectra of pyrolysed films derived from PS-PDMS, PS, and SU-8, respectively.](image)

<table>
<thead>
<tr>
<th>Electrode material</th>
<th>(\Delta E_p) (mV)</th>
<th>(k^0) (cm s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS-PDMS</td>
<td>109</td>
<td>8.0E-02</td>
</tr>
<tr>
<td>PS</td>
<td>78</td>
<td>3.3E-01</td>
</tr>
<tr>
<td>SU-8</td>
<td>92</td>
<td>1.2E-01</td>
</tr>
</tbody>
</table>