Shaping our Energy Future with Electrospinning

Zhang, Wenjing (Angela)

Publication date:
2013

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Electrochemical devices for clean energy conversion such as proton exchange membrane fuel cells1-3 and solid oxide fuel cells4-5 are currently and for the foreseeable future very much in the spotlight. Although these developing energy technologies have seen a rapid development, new break-through developments are needed to improve their durability, efficiency, power density and cost to make them commercial viable. Among those energy-related devices, functional ion-conductive membranes and electrodes play crucial roles in determining electrochemical reaction rate, system degradation and integration, which depend intimately on the properties of their materials.

Nanostructured materials are becoming increasingly important for electrochemical conversion and storage devices in recent years because of the unusual mechanical, electrical and optical properties endowed by confining the dimensions of such materials and because of the combination of bulk and surface properties to the overall behavior. The greatest advantage of electrospinning is the possibility of generating composite networks from a rich variety of materials with the ability to control composition, morphology and secondary structure which allows design of optimum material characteristics for membranes. This simple and versatile method has been used in my research to address the sizable challenges facing those involved in materials research into energy conversion devices.

Herein, initial results will be presented on 1) electrolyte/catalysts composite electrodes for proton exchange membrane fuel cells; 2) Ceramic nanofiber cathode for solid oxide fuel cells. Enhancements in electrochemical performance, mechanical properties and durability were clearly seen and related to the unique three-dimensional network of nanofibers, which enhances gas accesability, optimizes three-phase boundary and improves water management on the cathode side. The outcomes of these invetions are significant reduction in precious metal catalyst loading and improvement of durability of fuel cells without sacrificing electrochemical performance. This brings fuel cell technology one step forward towarding green energy in real life.

Ambitious Scientist and Hans Christian Ørsted Fellow with background in materials science and energy technology with excellent academic track record. Graduated from Asian No.1 University with 3 years postdoc experience in top ranked US university’s research group on fuel cell technology. Collaborated on research projects with renowned global companies (e.g., Nissan North America, 3M Corporation and Merck-Millipore), in the field of nanotechnology, electrochemistry and material engineering. Substantial experience in conducting independent award winning research, mentoring PhD and undergraduate students, writing successful government subsidy proposals (US Department of Energy and Technical University of Denmark), published research papers and US patent. Breakthrough invention in the nanofiber electrode patent attracts buyers from industry (Merck-Millipore and Nissan Co.).