Building Performance Simulation (BPS) Software for Planning of Energy Efficiency Retrofits

Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Building Performance Simulation (BPS) Software for Planning of Energy Efficiency Retrofits

Thomas Fænø Mondrup, Jan Karlshøj, and Flemming Vestergaard
Department of Civil Engineering, DTU, Denmark

Session: Retrofitting of Buildings II, Paper Nr: 152
10th Nordic Symposium on Building Physics (NSB 2014)
Lund, Sweden, 15-19 June 2014
Index

- Study Background
- Study Goals
- Case Study
 - (a) Framework
 - (b) Methodology
 - (c) Investigations [1-4]
- Conclusions
Study Background

Selecting Retrofit Strategies
- When planning a retrofit, multiple performance strategies and actions has to be considered.
- How to select the most appropriate retrofit strategy/actions?
- A decision support methodology is needed.
- Possible solution: Implementing Building Performance Simulation (BPS) software as a performance-based decision-making tool.

Strategy 1: Building envelope and design aspects
Actions: Insulation upgrades, air leakage reduction, improvement of doors and windows, control and exploitation of solar gain and daylight, etc.

Strategy 2: Building systems and installations
Actions: Installation of high-efficiency HVAC systems, improvement of electrical lighting systems, improvement of domestic appliances, installation of renewable energy, etc.

Strategy 3: Building services and management tools
Actions: Monitor and control of the building during operation, utilization of metering services, clock controls, sensors, etc.
Study Goals

• Multifaceted Study
 - The main purpose is to describe a methodology to facilitate BPS software as a performance-based decision-making tool.
 - The methodology is implemented and tested in a retrofit case study.
Case Study Framework

• **Gate 21 Pilot Project**
 - The case study is directed towards the Gate 21 pilot project ”Building Envelope Retrofits: Retrofitting of Danish Social Housing”.
 - The case study aims to develop multiple exemplar building envelope retrofit actions, which can be adopted into future projects.
 - The case study focuses on integrating BPSs as a performance-based decision-support tool.

• **Clients Requirements**
 - The client (Gate 21) wishes to develop building envelope retrofit actions optimized for solar radiation and daylight exploitation.
 - Retrofitting focus: Investigating different building envelope design variables, particularly, different window positions, sizes, and shapes.
Case Study Methodology

- **Simulation-based process**
 - The simulation-based retrofit design process consists of three phases:

 1. Analysis of existing conditions
 2. Development of retrofit strategies/actions (+ evaluation)
 3. Implementation of retrofit strategies/actions

Phase 1: First step is to understand existing conditions, current requirements, limitations, project site context, etc.

Phase 2: Based on existing conditions, multiple retrofit strategies/actions are developed and evaluated against predefined performance criteria.

Phase 3: The final step is to construct and implement the proposed retrofit strategies/actions, hereby improving the overall building performance.
Case Study Investigations [1/4]

• Analysis of Existing Conditions
 - The dwelling used for the retrofit case study is a precast concrete construction, 1970s single storey house in Albertslund, Denmark.
 - Pre-retrofit buildings conditions: Aging window units, poor insulation, air leakage, and mould growth due to surface condensation.
Case Study Investigations [2/4]

- **Development of Retrofit Strategies/Actions**
 - Retrofit actions focus on investigating selected building envelope design variables: Alternative window positions, sizes, and shapes.
 - List of retrofit actions:

 Action (0): Existing conditions
 Action (1): Energy efficient windows
 Action (2): Energy efficient windows + increased window width
 Action (3): Energy efficient windows + increased window height
 Action (4): Energy efficient windows + extra window section at patio doors
 Action (5): Energy efficient windows + double patio doors
 Action (6): Energy efficient windows + small skylight in living room
 Action (7): Energy efficient windows + large skylight in living room
 Action (8): Energy efficient windows + extra window section in living room
 Action (9): Energy efficient windows + extra window section in master bedroom
Case Study Investigations [3/4]

- Development of Retrofit Strategies/Actions
 - BPS software is used to investigate the retrofit actions; simulation of interior solar gains and daylight distribution [performed in IESVE].

 HERE: Average annual solar gains and daylight distribution, mapped over existing conditions, Action 1, and Action 7, contour range 40-760 LUX.
EXISTING FIGURES, LIVING ROOM
SOLAR GAIN = 352 kWh/yr
EE WINDOWS
FIGURES, LIVING ROOM ●
SOLAR GAIN = 530 kWh/yr
SKYLIGHT
FIGURES, LIVING ROOM
SOLAR GAIN = 862 kWh/yr
Case Study Investigations [4/4]

- Implementation of Retrofit Strategies/Actions
 - The client should select specific retrofit actions within the developed solution space.

<table>
<thead>
<tr>
<th>Action 0</th>
<th>#Existing conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td>#Energy efficient windows</td>
</tr>
<tr>
<td>Action 2</td>
<td>#Window width</td>
</tr>
<tr>
<td>Action 3</td>
<td>#Window height</td>
</tr>
<tr>
<td>Action 4</td>
<td>#Windows at patio doors</td>
</tr>
<tr>
<td>Action 5</td>
<td>#Double patio doors</td>
</tr>
<tr>
<td>Action 6</td>
<td>#Small skylight, living room</td>
</tr>
<tr>
<td>Action 7</td>
<td>#Large skylight, living room</td>
</tr>
<tr>
<td>Action 8</td>
<td>#Window section, living room</td>
</tr>
<tr>
<td>Action 9</td>
<td>#Window section, master bedroom</td>
</tr>
</tbody>
</table>
Conclusions

• Implementation of Retrofit Strategies/Actions
 - In the decision-making process of selecting specific retrofit strategies, multiple actions are available.
 - Therefore, a decision support is needed.
 - BPS can be implemented as a performance-based decision-making methodology.