

Design Load Basis for onshore turbines - Revision 00

Hansen, Morten Hartvig; Thomsen, Kenneth; Natarajan, Anand; Barlas, Athanasios

Publication date: 2015

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Hansen, M. H., Thomsen, K., Natarajan, A., & Barlas, A. (2015). Design Load Basis for onshore turbines -Revision 00. DTU Wind Energy. DTU Wind Energy E No. 0074(EN)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Design Load Basis for onshore turbines Revision 00

Morten Hartvig Hansen, Kenneth Thomsen, Anand Natarajan, Athanasios Barlas

March 2015

Design Load Basis for onshore turbines

Revision 00

Report DTU Wind Energy-E-0074(EN) 2015

By Morten Hartvig Hansen, Kenneth Thomsen, Anand Natarajan

Copyright:	Reproduction of this publication in whole or in part must include the customary bibliographic citation, including author attribution, report title, etc.
Cover photo:	None
Published by:	Department of Wind Energy, Frederiksborgvej 399
Request report	www.dtu.dk
from:	
ISSN:	[0000-0000] (electronic version)
ISBN:	978-87-93278-17-2 (electronic version)
ISSN:	[0000-0000] (printed version)
ISBN:	[000-00-0000-0] (printed version)

Preface

DTU Wind Energy is not designing and manufacturing wind turbines and do therefore not need a Design Load Basis (DLB) that is accepted by a certification body. However, to assess the load consequences of innovative features and devices added to existing turbine concepts or new turbine concept developed in our research, it is useful to have a full DLB that follows the current design standard and is representative of a general DLB used by the industry. It will set a standard for the design load evaluations performed at DTU Wind Energy, which is aligned with the challenges faced by the industry and therefore ensures that our research continues to have a strong foundation in this interaction. Furthermore, the use of a full DLB that follows the current standard can improve and increase the feedback from the research at DTU Wind Energy to the international standardization of design load calculations.

Content

1.	esign Load Cases
----	------------------

Summary

This report describes the full Design Load Basis (DLB) used for load calculations at DTU Wind Energy for onshore wind turbines. It is based on the third edition of the IEC 61400-1 standard and covers the typical cases for assessment of extreme and fatigue loads on the turbine components. Special cases that are intended for specific turbines must be added to this DLB if necessary e.g. faults of specific sensors or actuators. For other targeted investigations, some cases in this DLB for onshore turbines may be omitted.

The description is generic and not linked to the development and testing of the HAWC2 code or external models and controllers coupled to HAWC2 through the DLL interface. The description is therefore formulated without direct references to HAWC2 features, commands, or terminology. This generic formulation has the advantage that the DLB can be used independently of the simulation tool. A detailed description of the pre-processing tools for generating the input files for the HAWC2 simulations can be found in [1].

Each Design Load Case (DLC) of the DLB is described in the following chapter. The DLC description also contains a short description on how the simulation results will be post-processed to obtain the tables of extreme and fatigue loads for the main components. More detailed descriptions of the post-processing methods are given in [2] and [3].

1. Design Load Cases

This chapter contains a description of each Design Load Case (DLC) in the DLB. Table 1 shows an overview of the DLCs, where the columns are:

Name:	Identifier of the DLC
Load:	Type of load analysis (U=extreme/ultimate loads and F=fatigue)
PSF:	Partial safety factor on the loads.
Description:	Short description of the operating conditions.
WSP:	Mean wind speeds at hub height in m/s, e.g. 4:2:26 means the
	range 4, 6, 8,, 26 m/s (Vr=rated, Vin=cut-in, Vout=cut-out wind
	speeds, Vref=reference speed of the IEC class, Vmaint=max.
	speed during maintenance, V1 and V50 are wind speeds with 1-
	and 50-year recurrence period).
Yaw:	Mean yaw errors in degrees, e.g8/+8 deg means that
	simulations are performed for these two yaw errors for each wind
	speed and turbulence seed.
Turb.:	Turbulence model or intensity.
Seeds:	Number of turbulence seeds used per mean wind speed and yaw
	error.
Shear:	Vertical shear exponent or reference to equation in the IEC 61400-
	1 standard.
Gust:	Gust type according to the IEC 61400-1 standard.
Fault:	Short description of fault type.
Т:	Length of simulated load signal used for analysis in seconds.
Files:	Number of result files.

The wind speed range for normal operation is here set to 4 - 26 m/s; however, it must be adjusted to the specific turbine, e.g. in case that the turbine has a storm controller.

All simulations are to be performed with aerodynamic imbalance due to uncertainty in blade pitch calibration of 0.5 deg, whereby one blade has a -0.5 deg pitch offset, another blade has +0.5 deg pitch offset, and the last blade of a three bladed rotor has no offset. Similar, all simulations are performed with a mass imbalance of each blade corresponding to 0.2% of the total blade mass, which is placed on two blades in their centers of gravity.

For the listed DLCs with the chosen operational wind speed range, the total number of simulations, and therefore also result files, is 1880 and total simulation time of 259 hours. Note that any transients in the simulation start-up must be excluded and are not counted to the time lengths of the simulated load signals that will be used for the load analysis.

A detailed description of each DLC is given in the pages after Table 1. It contains also a brief description of how the result files with the loads are post-processed to obtain the design load tables.

Name	Load	PSF ¹	Description	WSP [m/s]	Yaw [deg]	Turb.	Seeds	Shear	Gust	Fault	T [s]	Files
DLC11	U	1.25	Normal production	4:2:26	-10/0/+10	NTM	6	0.2	None	None	600	216
DLC12	F	1.0	Normal production	4:2:26	-10/0/+10	NTM	6	0.2	None	None	600	216
DLC13	U	1.35	Normal production	4:2:26	-10/0/+10	ETM	6	0.2	None	None	600	216
DLC14	U	1.35	Normal production	Vr+/-2,Vr	0	None	None	0.2	ECD	None	100	3
DLC15	U	1.35	Normal production	4:2:26	0	None	None	Eq. in IEC	EWS	None	100	48
DLC21	U	1.35	Grid loss	4:2:26	-10/0/+10	NTM	4	0.2	None	Grid loss at 10s	100	144
DLC22p	U	1.1	Pitch runaway	12:2:26	0	NTM	12	0.2	None	Max. pitch to fine at 10s	100	96
DLC22y	U	1.1	Extreme yaw error	4:2:26	15:15:345	NTM	1	0.2	None	Abnormal yaw error	600	276
DLC22b	U	1.1	One blade stuck at min. angle	4:2:26	0	NTM	12	0.2	None	1 blade at fine pitch	600	144
DLC23	U	1.1	Grid loss	Vr+/-2, Vout	0	None	None	0.2	EOG	Grid loss at three diff. times	100	9
DLC24	F/U	1.0	Production in large yaw error	4:2:26	-20/+20	NTM	3	0.2	None	Large yaw error	600	72
DLC31	F	1.0	Start-up	Vin, Vr, Vout	0	None	None	0.2	None	None	100	3
DLC32	U	1.35	Start-up at four diff. times	Vin, Vr+/-2, Vout	0	None	None	0.2	EOG	None	100	16
DLC33	U	1.35	Start-up in EDC	Vin, Vr+/-2, Vout	0	None	None	0.2	EDC	None	100	16
DLC41	F	1.0	Shut-down	Vin, Vr, Vout	0	None	None	0.2	None	None	100	3
DLC42	U	1.35	Shut-down at six diff. times	Vr+/-2, Vout	0	None	None	0.2	EOG	None	100	18
DLC51	U	1.35	Emergency shut-down	Vr+/-2, Vout	0	NTM	12	0.2	None	None	100	36
DLC61	U	1.35	Parked in extreme wind	V50	-8/+8	11%	6	0.11	None	None	600	12
DLC62	U	1.1	Parked grid loss	V50	0:15:345	11%	1	0.11	None	None	600	24
DLC63	U	1.35	Parked with large yaw error	V1	-20/+20	11%	6	0.11	None	None	600	12
DLC64	F	1.0	Parked	4:2:0.7 Vref	-8/+8	NTM	6	0.2	None	None	600	192
DLC71	U	1.1	Rotor locked and extreme yaw	V1	0:15:345	11%	1	0.11	None	Rotor locked at 0:30:90 deg	600	96
DLC81	U	1.5	Maintenance	Vmaint	-8/+8	NTM	6	0.2	None	Maintenance	600	12
										Totals	259h	1880

Table 1: Overview of the Design Load Basis of DTU Wind Energy. For turbines with storm operation the wind speed range must be adjusted accordingly.

¹ Listed PSFs are for the standard values according to Table 3 of IEC 61400-1 Ed. 3. Note that the PSF can be lowered if gravity is part of the characteristic load for the particular channel.

DLC11	Power production in normal turbulence						
Assessment	Extreme extrapolation	n	Partial safety factor	1.25			
Description	Simulation of power production without faults performed for wind speeds in the						
	entire operational rar	nge wit	th normal turbulence accord	ding to the IEC class. Yaw			
	errors during normal	operat	tion are set to +/- 10 deg. S	ix seeds per wind speed			
	and yaw error are us	ed.					
Simulation	Length:	600 s					
setup	Wind:	Wind: 4 – 26 m/s with steps of 2 m/s					
	Yaw:	-10/0/-	+10 deg				
	Turbulence:	NTM,	6 seeds per wind speed an	d yaw error			
	Shear:	Vertica	al and exponent of 0.2				
	Gust:	None					
	Fault:	None					
Total no.							
simulations	216						
Post-	The extrapolation of extreme loads from cases DLC11 is performed to						
processing	statistically determine	e the lo	ong term load extremes [3].	Note that the simulations			
	used here are the sa	me as	computed in DLC12.				

DLC12	Power production in normal turbulence						
Assessment	Fatigue	Partial safety factor	1.0				
Description	Simulation of power production without faults performed for wind speeds in the						
	entire operational range wi	th normal turbulence accord	ding to the IEC class. Yaw				
	errors during normal opera	tion are set to +/- 10 deg. S	ix seeds per wind speed				
	and yaw error are used.						
Simulation	Length: 600 s						
setup	Wind: 4 – 20	6 m/s with steps of 2 m/s					
	Yaw: -10/0/	′+10 deg					
	Turbulence: NTM,	6 seeds per wind speed an	d yaw error				
	Shear: Vertic	al and exponent of 0.2					
	Gust: None						
	Fault: None						
Total no.							
simulations	216						
Post-	A load spectrum is extracted	ed for each load sensor and	each wind speed using				
processing	rainflow counting on the 18	B results files for each wind a	speed representing three				
	hour of normal operation a	t that particular wind speed.	The individual load				
	spectra are then combined to a life-time load spectrum using the wind						
	distribution of the wind class, and then the equivalent fatigue loads are						
	computed from this combined spectrum based on the Palmgren-Miner						
	assumption. Note that the	combined load spectrum als	so contains load cycles				
	from DLC24, DLC31, DLC	41, and DLC64.					

DLC13	Power production in extreme turbulence									
Assessment	Extreme – normal event Partial safety factor 1.35 ²									
Description	Simulation of power production without faults or yaw error performed for wind									
	speeds in the entire op	speeds in the entire operational range with extreme turbulence according to the								
	IEC class. Yaw errors	set to +/- 10 deg. Six seeds per v	wind speed and yaw							
	error are used.									
Simulation	Length: 60	5								
setup	Wind: 4	6 m/s with steps of 2 m/s								
	Yaw: -1	/+10 deg								
	Turbulence: E	Turbulence: ETM, Six seeds per wind speed								
	Shear: Vertical and exponent of 0.2									
	Gust: N	•								
	Fault: None									
Total no.										
simulations	216									
Post-	The mean of the extrer	values for each wind speed are	extracted for each							
processing	load sensor.									

DLC14	Power production in extreme coherent gust with wind direction change							
Assessment	Extreme – normal event Partial safety factor 1.35 ²							
Description	Simulation of power production without faults or turbulence and with extreme							
	coherent gust with wind direction change according to the IEC standard. Wind							
	speeds close to rate	d are	considered to capture the e	xtreme blade tip				
	deflections and flap	wise bl	ade moments.					
Simulation	Length:	100 s	5					
setup	Wind:	Vr an	d Vr +/- 2m/s					
	Yaw:	0 deg]					
	Turbulence:	None)					
	Shear:	Vertic	cal and exponent of 0.2					
	Gust:	ECD:	Equations (23) and (25) of	IEC 61400-1 (Ed. 3)				
	Fault:	None)					
Total no.								
simulations	3							
Post-	The extremes value	s over	all wind speeds are extract	ed for each load sensor.				
processing								

 $^{^2}$ For load sensors where gravity has a positive effect the partial safety factor can be reduced according IEC61400-1 (3. Ed.)

DLC15	Power production in extreme wind shear								
Assessment	Extreme – normal event Partial safety factor 1.35 ²								
Description	Simulation of power production without faults performed for wind speeds in the								
	entire operational range without turbulence and with extreme vertical or								
	horizontal wind shear transients in four different combinations, two pairs of								
	opposite sign in the two directions.								
Simulation	Length: 100 s								
setup	Wind: 4 – 26 m/s with steps of 2 m/s								
	Yaw: 0 deg								
	Turbulence: None								
	Shear: EWS: Equations (26) and (27) of IEC 61400-1 (Ed. 3)								
	Gust: None								
	Fault: None								
Total no.									
simulations	48								
Post-	The extremes values over all wind speeds are extracted for each load sensor.								
processing									

DLC21	Power production with grid loss						
Assessment	Extreme – normal event Partial safety factor 1.35 ²						
Description	Simulation of power production with grid loss (generator torque drops to zero)						
	after 10 s and thereafter the overspeed protection of the turbine controller ³ will						
	shut-down the turbine. Normal turbulence and four seeds per wind speed and						
	yaw error are used.						
Simulation	Length: 100 s						
setup	Wind: 4 – 26 m/s with steps of 2 m/s						
	Yaw: -10/0/+10 deg						
	Turbulence: NTM, 4 seeds per wind speed and yaw error						
	Shear: Vertical and exponent of 0.2						
	Gust: None						
	Fault: Grid loss at t=10 s						
Total no.							
simulations	144						
Post-	For each load sensor, the average value of the upper half extreme values of the						
processing	12 realizations is computed for each wind speed.						

³ In case that the controller does not include an overspeed monitoring feature, the simulations are set up by forcing an overspeed shut-down at the time instant where the rotor speed has accelerate to the specific overspeed limit.

DLC22b	Power production with one blade at minimum pitch angle					
Assessment	Extreme – abnorma	Extreme – abnormal event Safety factor 1.1				
Description	Simulation of power	production	with failure in the pitch	system or bearing of one		
	blade such that the	turbine is o	perating with this blade	at minimum pitch angle.		
	All operational wind	speeds an	d normal turbulence are	e considered with 12		
	seeds per wind spee	ed.				
Simulation	Length:	100 s				
setup	Wind:	4 – 26 m/s	s with steps of 2 m/s			
	Yaw:	0 deg				
	Turbulence:	NTM, 12 s	seeds per wind speed			
	Shear:	Vertical a	nd exponent of 0.2			
	Gust:	None				
	Fault:	Failure of	pitch system on one bla	ade leading to this blade		
		remaining at minimum pitch angle.				
Total no.						
simulations	144					
Post-	For each load sense	or, the aver	age value of the upper	half extreme values of the		
processing	12 realizations is co	mputed for	each wind speed.			

DLC22p	Power production with pitch runaway ⁴								
Assessment	Extreme – abnormal event Safety factor 1.1								
Description	Simulation of power production with failure in pitch system after 10 s leads to								
	collective pitching to	collective pitching towards minimum pitch angle at the maximum pitch speed.							
	Wind speeds from 1	2 m/s and above and no	ormal turbulence wi	th 12 seeds per					
	wind speed are con	sidered.							
Simulation	Length:	100 s							
setup	Wind:	12 – 26 m/s with steps of 2 m/s							
	Yaw:	0							
	Turbulence:	NTM, 12 seeds per wind speed							
	Shear:	Vertical and exponent of 0.2							
	Gust:	None							
	Fault:	Failure in pitch system leading to collective pitch runaway							
		where all blades pitch	at t=10 s with maxir	num speed					
		towards minimum pitch angle.							
Total no.									
simulations	96								
Post-	For each load sensor, the average value of the upper half extreme values of the								
processing	12 realizations is co	mputed for each wind s	peed.						

⁴ The DLC may be omitted if it can be argued that there is a redundant safety system that detects a pitch run-away and shuts down the turbine immediately, or that makes a pitch run-away impossible.

DLC22y	Power production with abnormal yaw error						
Assessment	Extreme – abnorma	l event	Safety factor	1.1			
Description	Simulation of power	production with abnorm	ally large yaw erro	r due to failure in			
	the turbine safety sy	stem. All operational wi	nd speeds and norr	mal turbulence			
	are considered with	one seed per wind spee	ed and yaw error.				
Simulation	Length:	600 s					
setup	Wind:	4 – 26 m/s with steps of	of 2 m/s				
	Yaw:	15 to 345 deg with step	os of 15 deg				
	Turbulence:	NTM, 1 seed per wind	speed and yaw erro	or			
	Shear:	Vertical and exponent	of 0.2				
	Gust:	None					
	Fault:	Failure of yaw system	leading to abnorma	l yaw errors.			
Total no.							
simulations	276						
Post-	For each load sensor, the average value of the upper half extreme values of the						
processing	12 realizations is co	mputed for each wind sp	peed.				

DLC23	Power production with grid loss during extreme operating gust				
Assessment	Extreme – abnormal ev	vent	Safety factor	1.1	
Description	Simulation of power pr	oductio	on with grid loss perform	ed at close to rated and at	
	cut-out wind speeds. T	cut-out wind speeds. To capture the extremes of this abnormal event, the grid			
	loss is initiated at three	loss is initiated at three different time instances after the gust has started.			
Simulation	Length: 10	00 s			
setup	Wind: V	r+/-2 n	n/s and Vout		
	Yaw: 0	deg			
	Turbulence: N	one			
	Shear: V	ertical	and exponent of 0.2		
	Gust: E	OG: E	quation (17) of IEC 6140	0-1 (Ed. 3)	
	Fault: G	rid los	s initiated at three differe	nce instances in the gust.	
Total no.					
simulations	9				
Post-	The extremes values of	over all	wind speeds and timing	s are extracted for each	
processing	load sensor.				

DLC24	Power production with large yaw errors				
Assessment	Fatigue	Safety factor	1.0		
Description	Simulation of power	production with large yaw e	rrors of +/-20 deg performed for		
	all operational wind	speeds with normal turbuler	ice using three seeds per wind		
	speed and yaw erro	r. The large yaw errors are a	a result of a failure in the yaw		
	control and the size	of the yaw error is defined b	y the safety system.		
Simulation	Length:	600 s			
setup	Wind:	4 – 26 m/s with steps of 2 r	n/s		
	Yaw:	-20/+20 deg			
	Turbulence:	NTM, 3 seeds per wind spe	eed and yaw error		
	Shear:	Vertical and exponent of 0.	2		
	Gust:	None			
	Fault:	Failure in yaw control leadi	ng to maximum yaw error		
		ensured by the safety syste	em.		
Total no.					
simulations	72				
Post-	The one hour load spectra obtained from the six realizations of each wind				
processing	speeds are added to	o the load spectra from DLC	12 assuming that these large		
	yaw errors occur 50	h per year.			

DLC31	Start-up in normal wind profile				
Assessment	Fatigue		Safety factor		1.0
Description	Simulation of start-u	ip in no	ormal wind profile and	d at cut	-in, rated, and cut-out
	wind speeds.				
Simulation	Length:	100 s	3		
setup	Wind:	۷in, ۱	/r and Vout		
	Yaw:	0 deg]		
	Turbulence:	None))		
	Shear:	Vertic	cal and exponent of C).2	
	Gust:	None)		
	Fault:	None)		
Total no.					
simulations	3				
Post-	A total of 1000 start-	-ups at	t cut-in wind speed, 5	50 at ra	ted wind speed and 50 at
processing	cut-out wind speed per year are assumed, and the load cycles during start-up				
	for each load sensor and each wind speed are added to the combined load				
	spectrum obtained f	rom D	LC12 and DLC24.		

DLC32	Start-up during extreme operating gust				
Assessment	Extreme – normal e	vent	Safety factor		1.35 ²
Description	Simulation of start-u	p perform	ned at cut-in, close	to rate	ed and cut-out wind
	speeds. To capture	the extrem	mes of this event, t	he sta	rt-up is initiated at four
	different time instan	ces after	the gust has starte	d.	
Simulation	Length:	100 s			
setup	Wind:	Vin, Vr+	/-2 m/s and Vout		
	Yaw:	0 deg			
	Turbulence:	None			
	Shear:	Vertical	and exponent of 0.	2	
	Gust:	EOG: Eo	quation (17) of IEC	61400)-1 (Ed. 3)
	Fault:	None			
Total no.					
simulations	16				
Post-	The extremes values over all wind speeds and timings are extracted for each				
processing	load sensor.				

DLC33	Start-up during extreme wind direction change			
Assessment	Extreme – normal e	vent	Safety factor	1.35 ²
Description	Simulation of start-u	p during	extreme wind direction ch	nange performed at cut-in,
	close to rated and c	ut-out win	nd speeds. Two timings fo	or each sign of the
	direction change is u	used: star	t-up is just before the dire	ection change and one
	half way through the	e direction	i change.	
Simulation	Length:	100 s		
setup	Wind:	Vin, Vr+	/-2 m/s and Vout	
	Yaw:	0 deg		
	Turbulence:	None		
	Shear:	Vertical	and exponent of 0.2	
	Gust:	EDC: Ec	quation (21) of IEC 61400)-1 (Ed. 3)
	Fault:	None		
Total no.				
simulations	16			
Post-	The extremes values over all wind speeds and timings are extracted for each			
processing	load sensor.			

DLC41	Shut-down in norm	Shut-down in normal wind profile				
Assessment	Fatigue	Safety factor	1.0			
Description	Simulation of normal	l shut-down in normal wind	profile and at cut-in, rated, and			
	cut-out wind speeds.					
Simulation	Length:	100 s				
setup	Wind:	Vin, Vr, and Vout				
	Yaw:	0 deg				
	Turbulence:	None				
	Shear:	Vertical and exponent of 0	.2			
	Gust:	None				
	Fault:	None				
Total no.						
simulations	3					
Post-	A total of 1000 shut-	downs at cut-in wind speed	I, 50 at rated wind speed and 50			
processing	at cut-out wind speed per year are assumed, and the load cycles during normal					
	shut-down for each load sensor and each wind speed are added to the					
	combined load spect	trum obtained from DLC12	and DLC24.			

DLC42	Shut-down during extreme operating gust				
Assessment	Extreme – normal e	vent	Safety factor		1.35
Description	Simulation of norma	al shut-dov	wn performed at clo	se to	rated and cut-out wind
	speeds. To capture	the extre	mes of this event, th	ne shu	ut-down is initiated at six
	different time instan	ces after	the gust has started	ł.	
Simulation	Length:	100 s			
setup	Wind:	Vr+/-2 m	n/s and Vout		
	Yaw:	0 deg			
	Turbulence:	None			
	Shear:	Vertical	and exponent of 0.2	2	
	Gust:	EOG: E	quation (17) of IEC	61400)-1 (Ed. 3)
	Fault:	None			
Total no.					
simulations	18				
Post-	The extremes values over all wind speeds and timings are extracted for each				
processing	load sensor.				

DLC51	Emergency shut-down			
Assessment	Extreme – normal event		Safety factor	1.35 ²
Description	Simulation of emerg	ency shu	t-down performed at clos	e to rated and cut-out
	wind speeds in normal turbulence with 12 seeds per wind speed. The			
	emergency stop may or may not incorporate a mechanical brake dependent on			
	the turbine type.			
Simulation	Length:	100 s		
setup	Wind:	Vr+/-2 m	n/s and Vout	
	Yaw:	0 deg		
	Turbulence:	NTM, 12	2 seeds per wind speed	
	Shear:	Vertical	and exponent of 0.2	
	Gust:	None		
	Fault:	None		
Total no.				
simulations	36			
Post-	The average of the upper half extremes values for each wind speed is			
processing	computed for each l	oad sens	or.	

DLC61	Parked in 50-year extreme wind			
Assessment	Extreme – normal e	vent	Safety factor	1.35 ²
Description	Simulation of parked	d turbine v	with idling rotor and n	ninor yaw error (according to
	the standard) at a w	vind speed	d with 50-year recurre	nce period and turbulence
	intensity of 11%. Six	k seeds p	er yaw error are used	
Simulation	Length:	600 s		
setup	Wind:	V50		
	Yaw:	-8/+8 de	g	
	Turbulence:	11% inte	ensity, 6 seeds per wi	nd speed and yaw error
	Shear:	Vertical	and exponent of 0.11	
	Gust:	None		
	Fault:	None		
Total no.				
simulations	12			
Post-	The average of the	upper hal	f extremes values is o	computed for each load
processing	sensor.			

DLC62	Parked without grid connection in 50-year extreme wind				
Assessment	Extreme – abnorma	l event	Safety factor	1.1	
Description	Simulation of parke	d turbine	with idling rotor and a	abnormally	large yaw error due
	to grid loss at a wine	d speed w	vith 50-year recurren	ce period a	and turbulence
	intensity of 11%. Or	ne seed p	er yaw error is used.		
Simulation	Length:	600 s			
setup	Wind:	V50			
	Yaw:	0:15:345	5 deg		
	Turbulence:	11% inte	ensity, 1 seed per wi	nd speed a	and yaw error
	Shear:	Vertical	and exponent of 0.1	1	
	Gust:	None			
	Fault:	None			
Total no.					
simulations	24				
Post-	The average of the	upper hal	f extremes values is	computed	for each load
processing	sensor.				

DLC63	Parked with large yaw error in 1-year wind			
Assessment	Extreme – normal e	vent	Safety factor	1.35 ²
Description	Simulation of parked	d turbine	with idling rotor and larg	e yaw error due to failure in
	yaw control system	at a wind	speed with 1-year recu	rence period and
	turbulence intensity	of 11%. S	Six seeds per yaw error	are used.
Simulation	Length:	600 s		
setup	Wind:	V1		
	Yaw:	-20/+20	deg	
	Turbulence:	11% inte	ensity	
	Shear:	Vertical	and exponent of 0.11	
	Gust:	None		
	Fault:	None		
Total no.				
simulations	12			
Post-	The average of the	upper hal	If extremes values is cor	nputed for each load
processing	sensor.			

DLC64	Parked					
Assessment	Fatigue	Safety factor	1.0			
Description	Simulation of parked turbine with idling rotor and minor yaw error (according to					
	the standard) at wind speeds from 4 m/s to 70% of the reference wind speed of					
	the IEC class. Six seeds per wind speed and yaw error are used.					
Simulation	Length:	600 s				
setup	Wind:	4 m/s to 0.7*Vref with steps of 2 m/s				
	Yaw:	-8/+8 deg				
	Turbulence:	None				
	Shear:	Vertical and exponent of 0.2				
	Gust:	None				
	Fault:	None				
Total no.						
simulations	192 ⁵					
Post-	Assuming that the turbine is idling 2.5% of the time in each wind speed bin, the					
processing	load cycles during idling for each load sensor and each wind speed are added					
	to the combined load spectrum obtained from DLC12 and DLC24.					

DLC71	Parked with rotor locked in 1-year extreme wind						
Assessment	Extreme – abnorma	l event	Safety factor		1.1		
Description	Simulation of parked turbine with rotor locked at 0:30:90 deg and abnormally						
	large yaw error due to electrical fault at a wind speed with 1-year recurrence						
	period and turbulence intensity of 11%. One seed per yaw error is used.						
Simulation	Length:	600 s					
setup	Wind:	V1					
	Yaw:	Yaw: 0:15:345 deg					
	Turbulence:	urbulence: 11% intensity					
	Shear:	ar: Vertical and exponent of 0.11					
	Gust:	: None					
	Fault:	None					
Total no.							
simulations	96						
Post-	The average of the upper half extremes values is computed for each load						
processing	sensor.						

⁵ The number of simulations will vary with the reference wind speed of the selected IEC wind class.

DLC81	Maintenance						
Assessment	Extreme – normal e	vent	Safety factor	1.35 ²			
Description	Simulation of parked turbine with the rotor locked in the best position ⁶ and minor						
	yaw error at the maximum wind speed for maintenance and normal turbulence						
	model. Six seeds per yaw error are used.						
Simulation	Length:	600 s					
setup	Wind:	Vmaint					
	Yaw:	-8/+8 de	g				
	Turbulence: NTM, 6 seeds per yaw error.						
	Shear: Vertical and exponent of 0.2						
	Gust: None						
	Fault:	None					
Total no.							
simulations	12						
Post-	The average of the upper half extremes values is computed for each load						
processing	sensor.						

⁶ This best azimuth position of the rotor when it is locked for maintenance may be turbine dependent.

References

- [1] Verelst, D. R., 2015, *Auto-generation of Design Load Cases*, Online document: https://gitlab.windenergy.dtu.dk/dave/prepost/blob/master/howto-make-dlcs.md
- [2] Pedersen, M. M. (2014). *Post processing of Design Load Cases using Pdap*. DTU Wind Energy. (DTU Wind Energy I; No. 0371), Online on orbit.dtu.dk.
- [3] Natarajan, A. and Holley, W. E., Statistical Extreme Loads Extrapolation with Quadratic Distortions for Wind Turbines, ASME Journal of Solar Energy Engineering, Vol. 130, 031017, Aug 2008.