Experimental study of the DTU 10 MW wind turbine on a TLP floater in waves and wind

Bredmose, Henrik; Mikkelsen, Robert; Hansen, Anders Mandrup; Laugesen, Robert; Heilskov, Nicolai; Jensen, Bjarne; Kirkegaard, Jens

Publication date:
2015

Citation (APA):
Experimental study of the DTU 10 MW wind turbine on a TLP floater in waves and wind

Henrik Bremose, Robert Mikkelsen, Anders Mandrup Hansen, Robert Laugesen
DTU Wind Energy
hbre@dtu.dk

Nicolai Heilskov, Bjarne Jensen, Jens Kirkegaard
DHI

Part of the INNWIND.EU project
Scaling principles for floating wind turbine tests I

Define a length scale ratio

\[\lambda = \frac{L_p}{L_m} \]

Gravity is dominant!
Ratio of force to gravity is preserved

\[\frac{M_p a_p}{M_p g} = \frac{M_m a_m}{M_m g} \quad \Rightarrow \quad a_p = a_m \]

Hereby time scale ratio is locked:

\[\frac{T_p}{T_m} = \sqrt{\lambda} \quad \Leftarrow \quad \frac{L_p}{T_p^2} = \frac{L_m}{T_m^2} \]

Preserve ratio of structural and fluid mass

\[\frac{M_p}{\rho_{wp} V_{lp}} = \frac{M_m}{\rho_{wm} V_{lm}} \quad \Rightarrow \quad \frac{M_p}{M_m} = \frac{\rho_{wp}}{\rho_{wm}} \lambda^3 \]

Classical Froude scaling of mass, length and time.
Well known for wave tank tests.
Scaling of rotor properties

Froude scaling of hydrodynamics:

\[
\lambda = \frac{L_p}{L_m} \quad \frac{T_p}{T_m} = \sqrt{\lambda} \quad \frac{M_p}{M_m} = \frac{\rho_w}{\rho_{wm}} \lambda^3
\]

Keep overall geometry

Keep consistent scaling of rotational frequency

Preserve tip speed ratio

\[
\frac{\text{TSR}_p}{\text{TSR}_m} = \frac{\omega_p R_p}{u_{am}} = 1 \quad \Rightarrow \quad u_{a,m} = u_{a,p}/\sqrt{\lambda}
\]

Thrust force and thrust coefficient

\[
F_T = \rho_a C_T A u_a^2 \sim \rho_w \lambda^3
\]

\[
\Rightarrow \quad \frac{C_{Tp}}{C_{Tm}} = \frac{\rho_w}{\rho_{wm}}
\]
Air velocities (model scale) ~ 1.5 m/s
Re (proto scale) ~ 10M
Re (model scale): ~ 25k

7.0N
1.5 m/s
74 RPM
1.5 m/s
1.5 m/s
1.5 m/s

Not likely to scale correctly!
Preliminary results
Extreme environment

Preliminary results
Gentle environment

Scaling principles
Air velocities (model scale) ~ 1.5 m/s
Re (proto scale) ~ 10M
Re (model scale): ~ 25k

Aerodynamic design

Setup and validation

Floater design
Aerodynamic design
Aerodynamic design
Low-Re airfoils and 2D wind tunnel measurements

Figure 5: Applied airfoils for spanwise sections.

Figure 3: Measured airfoil characteristics for SD7003 at Reynolds number 30k, 40k, 50k, 60, 100k, 200k. Selig data applied for 100k and 200k.
Mold for blades

Figure 10 Model scale wind turbine blade (left) and negative mold (right)
Wind generator and hub

6 units, 4x4m, max speed of 1.7 m/s

rpm control, collective blade pitch
Scaling principles
Air velocities (model scale) \(\sim 1.5\) m/s
Re (proto scale) \(\sim 10M\)
Re (model scale): \(\sim 25k\)

Aerodynamic design

Floater design

Setup and validation

Preliminary results
Extreme environment

Preliminary results
Gentle environment
Floater design

Compact, cost efficient

TLP was chosen – Bachynski (2014) gives input on design considerations

Designed with static model and a WAMIT based dynamic model

Figure 2.4: Floater geometry loaded into WAMIT.
Environmental conditions

Design requirements

max tendon angle with vertical: 10 deg
max tension: $1.8 \times T_0$
min tension: $0.2 \times T_0$

Johannesen et al (2002); Bachynski (2014)
The floater
Scaling principles

Air velocities
(model scale) \(\sim 1.5 \text{ m/s} \)
Re (proto scale) \(\sim 10M \)
Re (model scale): \(\sim 25k \)

Aerodynamic design

Floater design

Setup and validation

Preliminary results
Extreme environment

Preliminary results
Gentle environment
Wind field in rotor plane

(a) Mean wind speed.

(b) Turbulence intensity.
Rotor thrust

(b) With vortex generators

Figure 5.13: Thrust curves for the wind turbine model
Wave climates and RAOs

(a) Sea states 101 - 104

(b) Sea states 105 - 108

(a) Acceleration measured in nacelle and decaying amplitude of linear response.

(b) Power spectrum of acceleration signal.
Scaling principles

Air velocities (model scale) ~ 1.5 m/s
Re (proto scale) ~ 10M
Re (model scale): ~ 25k

Aerodynamic design

Floater design

Setup and validation

Preliminary results
Extreme environment

Preliminary results
Gentle environment
Preliminary results

Regular, gentle waves
Preliminary results

Irregular waves close to rated wind speed with and without wind
Preliminary results

Irregular waves at close to rated wind speed

Figure 7.26: Tower acceleration - Seastate 5 - Wind
Scaling principles

Air velocities
(model scale) \(\sim 1.5 \, \text{m/s} \)
Re (proto scale) \(\sim 10M \)
Re (model scale): \(\sim 25k \)

Aerodynamic design

Preliminary results
Extreme environment

Preliminary results
Gentle environment

Setup and validation

Floater design
Preliminary results

Response to extreme focused wave

Figure 7.37: Response of structure 1 to focused wave number 8 without wind (S1F08).
Preliminary results

Response to extreme focused wave
Tendon tension

Figure 7.38: Tendon tensions of structure 1 when subjected to focused wave number 8 without wind (SIF08).
Conclusions

Preliminary results
Extreme environment

- Focused waves
- Response in platform motion
- Spectral analysis

Preliminary results
Gentle environment

- Wind effects and rotor effects clearly detectable
- Damping effects and RAOs investigated

Setup and validation

Wind field measured in sweeps at 12 levels.
TI ~ 6 %

Fairly uniform with slight 'under cut'

Scaling principles

- Froude-scaling of water and global aerodynamic loads
- Low Re leads to re-designed rotor with larger chord

Aerodynamic design

10 MW rotor scaled to 1:60.
Collective pitch and rpm control

2D wind tunnel test at Re down to 30k incorporated in design

Wind generator 4x4 meter max speed of 1.7 m/s

Floater design

TLP Ø18m, height 25m, draft 37m

Static and dynamic design considerations
Experimental study of the DTU 10 MW wind turbine on a TLP floater in waves and wind

Henrik Bremose, Robert Mikkelsen, Anders Mandrup Hansen, Robert Laugesen
DTU Wind Energy
hbre@dtu.dk

Nicolai Heilskov, Bjarne Jensen, Jens Kirkegaard
DHI

Part of the INNWIND.EU project

DTU Wind Energy
Department of Wind Energy