WAsP prediction errors due to site orography

Mortensen, N.G.

Publication date:
2005

Citation (APA):
WAsP prediction errors due to site orography

Niels G. Mortensen
Wind Energy Department
Risø National Laboratory

WAsP Days ’05
24-25 January 2005
Outline

• Accumulation of orographic prediction errors
• WAsP basics in complex terrain
 • Size of map
 • Contour line interval
 • Spot height elevations
• Wind speed correlations
• Site ruggedness
 • Speed-up ratio
 • Relative relief
 • Std. dev. of elevations
 • Flow separation
 • Site ruggedness index RIX
 • Orographic performance indicator ΔRIX
Background

Accumulation of orographic prediction errors

- Application procedure
 \[U_A + (\Delta U_2 + E_2) = U_{Pe} \]

- Analysis procedure
 \[U_M - (\Delta U_1 + E_1) = U_A \]

- Combined procedure, eliminating \(U_A \)
 \[(U_M - \Delta U_1 + \Delta U_2) + (E_2 - E_1) = U_{Pe} \]

- The correct estimation is then made up of
 \[U_{Pm} = U_M - \Delta U_1 + \Delta U_2 \] (perfect prediction)
 \[U_{Pe} = U_{Pm} + (E_2 - E_1) \] (prediction error!)
Case study in northern Portugal
Modelling errors and map size I

![Graph showing wind speed prediction error vs. map diameter for different RIX values.](image)

Regional wind speed
- RIX = 10% (Port09)
- RIX = 33% (Port07)

Predicted wind speed
- RIX = 10% (PORT09)
- RIX = 33% (PORT07)
Modelling errors and map size II
The similarity principle – revisited

The predictor and the predicted site should be as similar as possible

- Topographical setting
 - Ruggedness index (RIX)
 - Elevation and exposure
 - Distance to significant roughness changes (coastline)
 - Background roughness lengths
- Climatic conditions
 - Same regional wind climate (synoptic and meso-scale)
 - General forcing effects
 - Atmospheric stability

This means that the basic input data should also be similar

- WAsP map
 - Map size
 - Contour interval
 - Accuracy and detail
 - Roughness classification
 - …
Cross-correlation of wind speeds

Coastal-plain / hill site pairs

Hill / hill site pairs

Error in predicted wind speed, %

Cross-correlation of wind speed, %
Prediction error vs. speed-up ratio
Prediction error vs. relative relief difference
Prediction error vs. RMS height difference
Prediction error vs. RIX difference

Wind-speed prediction error %

Orographic performance indicator

-40 -30 -20 -10 0 10 20 30

-40 -30 -20 -10 -20 -30 40

-30 -20 -10 10 20 30 40

-40 -30 -20 -10 -20 -30 40
The Ruggedness Index – revisited

• Reanalyses of the Portuguese data set
 • Larger, more detailed and accurate maps
 • Improved RIX calculation (WAsP or ME)
 • More calculation radii: 72 rather than 12
 • RIX configuration corresponds to BZ-model

• Data analysis and presentation
 • Asymmetry in plot of speed error vs. ΔRIX
 • speed error was defined as \((U_p/U_m - 1) \)
 • not obvious which trend line(s) to fit…
 • Substitute \(\log(U_p/U_m) \) for \((U_p/U_m - 1) \)
 • Easier to fit a trend line…?
Maps for RIX calculation and test

- Hand-digitised map
 - 8 by 8 km²
 - 50-10-m contours

- SRTM-derived map
 - 20 km radius
 - 50-, 10- and 5-m contours
Wind speed error vs. ΔRIX (new maps etc.)
\[\log\left(\frac{U_p}{U_m}\right) \text{ vs. } \Delta RIX \]

\[y = 1.508x \]
\[R^2 = 0.975 \]

\[U_p = U_m \exp(\alpha \Delta RIX) \]
where \(\alpha = 1.5 \)
\[R = 3500 \text{ m and } \theta_c = 0.3 \]
Things to test…

- Wind speed prediction error is (almost) fixed…
 - Number of sectors
 - Modelling parameters
- RIX configuration can be varied easily
 - Original configuration somewhat arbitrary
 - Different calculation radii (3, 3.5, 4, and 5 km)
 - Calculation radius that provides max. RIX?
 - Different critical slopes (0.30, 0.35, 0.40, 0.45)
 - Matrix of R^2 for different set-up’s
- Weighting RIX with wind rose frequencies
Influence of RIX radius and critical slope

<table>
<thead>
<tr>
<th>Radius R [m]</th>
<th>Critical slope θ_c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>3000</td>
<td>0.960</td>
</tr>
<tr>
<td>3500</td>
<td>0.972</td>
</tr>
<tr>
<td>4000</td>
<td>0.971</td>
</tr>
<tr>
<td>5000</td>
<td>0.969</td>
</tr>
</tbody>
</table>

R^2 for different values of the calculation radius and critical slope.
Recalculation – best fit values

\[y = 2.406x \]
\[R^2 = 0.984 \]

\[U_p = U_m \exp(\alpha \Delta RIX) \]
where \(\alpha = 2.4 \)

\(R = 3500 \text{ m} \) and \(\theta_c = 0.4 \)
Recalculation – weighted with wind rose

\[
\ln(\frac{U_p}{U_m}) = y = 2.370x
\]

\[
R^2 = 0.977
\]

\[
U_p = U_m \exp(\alpha \Delta RIX)
\]

where \(\alpha = 2.4 \)

\(R = 3500 \) m and \(\theta_c = 0.4 \)

Weighted with wind rose
Conclusions

- The similarity principle
 - WAsP inputs (maps) should also be similar, of course
- Performance indicator ΔRIX
 - Concept reinforced using new and better data
- Relation between wind speed error and ΔRIX
 - Linear relation between $\log(U_p/U_m)$ and ΔRIX
 - Relation not very sensitive to calculation radius R
 - Relation not very sensitive to the critical slope θ_c
 - ΔRIX weighted with the wind rose does not improve the relation between $\log(U_p/U_m)$ and ΔRIX