In-Flame Measurements on Full-Scale Swirl Stabilized Bio-Dust Burners at Different Operational Conditions

Johansen, Joakim Myung; Jensen, Peter Arendt; Clausen, Sønnik; Fateev, Alexander; Nielsen, Karsten Lindorff; Tonell, M.; Andersen, J.; Glarborg, Peter

Publication date: 2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In-Flame Measurements on Full-Scale Swirl Stabilized Bio-Dust Burners at Different Operational Conditions

J.M. Johansen,1,2 P.A. Jensen,3 S. Clausen,4 A. Fateev,5 K.L. Nielsen,6 M. Tonell5, J. Andersen,7,8 and P. Glarborg9

1Technical University of Denmark, Department of Chemical and Biochemical Engineering, Saltofts Plads B229, 2800 Kgs. Lyngby, Denmark.
2Vattenfall, Støberigade 14, 2450 København SV, Denmark.
3‘DONG Energy, Amerikavej 7, 8700 Esbjerg, Denmark.

Oral presentation at the symposium is preferred

1. Summary and Purpose
A series of full-scale flame mapping campaigns on swirl stabilized bio-dust burners have been conducted at two different combined heat and power (CHP) plants in Denmark: Amagerværket Unit 1 (AMV1, 350 MWth) and Herningværket (HEV, 300 MWth) owned and operated by Vattenfall and DONG Energy Power, respectively. The two burners, both being in the 30-40 MWth size, represent two different generations of low NOx air-staged, swirl-stabilized wall burners for bio-dust combustion. The work provide quantified in-flame data of gas temperature, O2, CO, CO2, H2O, and light hydrocarbons from full-scale flames. The obtained measuring data will together with CFD modeling support the development of the next generation of bio-dust fired burners. The issue of scaling is well known in the academic literature and thus, full-scale results constitute an important step towards an understanding of burner dynamics and model evaluations.

2. Approach and Methods, Scientific Innovation, and Relevance
Systematic, large amplitude variations in burner operational conditions have been applied and the corresponding changes in flame behavior have been measured. The variations in operational conditions include the following parameters: Air flows (primary (PA), secondary (SA), tertiary (TA), and combinations thereof), temperature, swirl, and fuel particle sizes. The flame response has been evaluated using both non-intrusive optical measurements and probe measurements; and corresponding samples of fuel pellets and pulverized fuel were collected. These measurements included: Temperature measurements using both suction pyrometry and optical fourier transform infrared (FTIR) spectroscopy. Gas species concentrations have been quantified by extraction of gas samples analysed by parallel infrared (IR) and ultraviolet (UV) cells and O2 paramagnetic analyser. Flame shapes and particle cloud behavior have been observed using high speed imaging in both the visual and IR region. Specialized equipment has been developed specifically for these campaigns and includes among other a 5 m single part and a two part 8.6 m water cooled probe capable of reaching far into the boiler through the centre of the burner. Optical observations were applied both in the visual and the infrared region for flame behaviour evaluation, particle cloud trajectories, and particle cloud surface measurements by two-line pyrometry.

3. Results
Pyrolysis and combustion fronts can be identified by characteristic peaks in the pyrolysis gas concentrations (appearing between 0.75 and >2 m from the burner) and axial shifts in the temperature profile (maximal temperature increase takes place between 0.5 and 1.5 m from the burner), respectively. Changes in the air flow dynamics was found to influence the greatest extend on these properties. Increasing the local O2 excess through an increase in the SA flow pulls the pyrolysis front closer to the burner mouth with no apparent change in gas phase temperature. The opposite effect can be found when increasing the TA flow relative to the SA flow while maintaining the overall stoichiometry. This destabilizes the internal recirculation zone (IRZ) and both pyrolysis and combustion is found to take place further downstream of the burner mouth. In general flow characteristics influencing the IRZ seem to have high impact on the measured parameters. Decreasing the swirl number by approximately 20 % reduces (>50 %) or in some cases even eliminates the presence of pyrolysis gases from maximum quantities of 2-3 vol. % of CO and 2-3 vol. % of CH4 and C2H2 under normal operational conditions. Destabilizing the IRZ also lowers the flame temperature in the near burner field with as much as 200 K in a flame temperatures spanning between 1000-1750 K depending on the specific sample point.

Flame stability was evaluated assisted by optical observations: charge-coupled device and IR imaging. Flame lift could clearly be seen in the visual spectra and flame stabilization up to 1 m from the burner mouth was frequently observed in longer periods: up to 30 % of the time in some cases. Such flame instability was not immediately obvious from the temperature or chemical species profiles but could be correlated to the entrainment of cold particles into the furnace, identified using two-line pyrometry in the IR region. Significant penetration of cold particles (<850 K) could be observed under certain conditions entraining cold particles as far as 2 m into the furnace.

4. Conclusions
Coarse flame mapping along the centre line of a wall fired, swirl stabilized pulverized flame has proven successful for quantitative observations of flame responses to changes in burner operating conditions. The observed flame responses were all significant and a good all-round understanding of the burner dynamics of the two investigated burners can be derived. The reproducibility, e.g. in reference runs, were found to be good and thus, this work constitute a complete set of measurement data that can be used for large-scale model evaluation.

*Corresponding author: Joakim M. Johansen, DTU Chemical Engineering, Saltofts Plads B229, 2800 Kgs. Lyngby, Denmark, jjoa@kt.dtu.dk