The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs)

Blum, Arlene; Balan, Simona A.; Scheringer, Martin; Trier, Xenia; Goldenman, Greta; Cousins, Ian T.; Diamond, Miriam L.; Fletcher, Tony; Higgins, Christopher; Lindeman, Avery E.

Total number of authors: 14

Published in:
Environmental Health Perspectives

Link to article, DOI:
10.1289/ehp.1509934

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
As scientists and other professionals from a variety of disciplines, we are concerned about the production and release into the environment of an increasing number of poly- and perfluoroalkyl substances (PFASs) for the following reasons:

1. **PFASs are man-made and found everywhere.** PFASs are highly persistent, as they contain perfluorinated chains that only degrade very slowly, if at all, under environmental conditions. It is documented that some polyfluorinated chemicals break down to form perfluorinated ones (D’Eon and Mabury 2007).

2. **PFASs are found in the indoor and outdoor environments, wildlife, and human tissue and bodily fluids all over the globe.** They are emitted via industrial processes and military and firefighting operations (Darwin 2011; Fire Fighting Foam Coalition 2014), and they migrate out of consumer products into air (Shoeb et al. 2011), household dust (Björklund et al. 2009), food (Begley et al. 2008; Tittelmier et al. 2007; Trier et al. 2011), soil (Sepulvado et al. 2011; Strynar et al. 2012), ground and surface water, and make their way into drinking water (Eschauzier et al. 2012; Rahman et al. 2014).

3. **In animal studies, some long-chain PFASs have been found to cause liver toxicity, disruption of lipid metabolism and the immune and endocrine systems, adverse neurobehavioral effects, neonatal toxicity and death, and tumors in multiple organ systems (Lau et al. 2007; Post et al. 2012).** In the growing body of epidemiological evidence, some of these effects are supported by significant or suggestive associations between specific long-chain PFASs and adverse outcomes, including associations with testicular and kidney cancers (Barry et al. 2013; Benbrahim-Tallaa et al. 2014), liver malfunction (Gallo et al. 2012), hypothyroidism (Lopez-Espinosa et al. 2012), high cholesterol (Fitz-Simon et al. 2013; Nelson et al. 2009), ulcerative colitis (Steenland et al. 2012), lower birth weight and size (Fei et al. 2007), obesity (Halldorsson et al. 2012), decreased immune response to vaccines (Grandjean et al. 2012), and reduced hormone levels and delayed puberty (Lopez-Espinosa et al. 2011).

4. **Due to their high persistence, global distribution, bioaccumulation potential, and toxicity, some PFASs have been listed under the Stockholm Convention (United Nations Environment Programme 2009) as persistent organic pollutants (POPs).**

5. **As documented in the Helsingør Statement (Scheringer et al. 2014).**
 a. Although some of the long-chain PFASs are being regulated or phased out, the most common replacements are short-chain PFASs with similar structures, or compounds with fluorinated segments joined by ether linkages.
 b. While some shorter-chain fluorinated alternatives seem to be less bioaccumulative, they are still as environmentally persistent as long-chain substances or have persistent degradation products. Thus, a switch to short-chain and other fluorinated alternatives may not reduce the amounts of PFASs in the environment. In addition, because some of the shorter-chain PFASs are less effective, larger quantities may be needed to provide the same performance.
 c. While many fluorinated alternatives are being marketed, little information is publicly available on their chemical structures, properties, uses, and toxicological profiles.
 d. Increasing use of fluorinated alternatives will lead to increasing levels of stable perfluorinated degradation products in the environment, and possibly also in biota and humans. This would increase the risks of adverse effects on human health and the environment.

6. **Initial efforts to estimate overall emissions of PFASs into the environment have been limited due to uncertainties related to product formulations, quantities of production, production locations, efficiency of emission controls, and long-term trends in production history (Wang et al. 2014).**

7. **The technical capacity to destroy PFASs is currently insufficient in many parts of the world.**

Global action through the Montreal Protocol (United Nations Environment Programme 2012) successfully reduced the use of the highly persistent ozone-depleting chlorofluorocarbons (CFCs), thus allowing for the recovery of the ozone layer. However, many of the organohalogen replacements for CFCs are still of concern due to their high global warming potential. It is essential to learn from such past efforts and take measures at the international level to reduce the use of PFASs in products and prevent their replacement with fluorinated alternatives in order to avoid long-term harm to human health and the environment.

For these reasons, we call on the international community to cooperate in limiting the production and use of PFASs and in developing safer nonfluorinated alternatives. We therefore urge scientists, governments, chemical and product manufacturers, purchasing organizations, retailers, and consumers to take the following actions:

Scientists:

1. **Assemble, in collaboration with industry and governments, a global inventory of all PFASs in use or in the environment, including precursors and degradation products, and their functionality, properties, and toxicology.**

2. **Develop analytical methods for the identification and quantification of additional families of PFASs, including fluorinated alternatives.**

3. **Continue monitoring for legacy families of PFASs, including fluorinated alternatives.**

4. **Continue investigating the mechanisms of toxicity and exposure (e.g., sources, fate, transport, and bioaccumulation of PFASs), and improve methods for testing the safety of alternatives.**

5. **Bring research results to the attention of policy makers, industry, the media, and the public.**

Governments:

1. **Enact legislation to require only essential uses of PFASs, and enforce labeling to indicate uses.**

2. **Require manufacturers of PFASs to**
 a. **conduct more extensive toxicological testing,**
 b. **make chemical structures public,**
 c. **provide validated analytical methods for detection of PFASs,** and
 d. **assume extended producer responsibility and implement safe disposal of products and stockpiles containing PFASs.**

3. **Work with industry to develop public registries of products containing PFASs.**

4. **Make public annual statistical data on production, imports, and exports of PFASs.**
5. Whenever possible, avoid products containing, or manufac-
tured using, PFASs in government procurement.

6. In collaboration with industry, ensure that an infrastructure is in
place to safely transport, dispose of, and destroy PFASs and
PFAS-containing products, and enforce these measures.

Chemical manufacturers:
1. Make data on PFASs publicly available, including chemical
structures, properties, and toxicity.

2. Provide scientists with standard samples of PFASs, including
precursors and degradation products, to enable environmental
monitoring of PFASs.

3. Work with scientists and governments to develop safe testing for
PFASs.

4. Provide the supply chain with documentation on PFAS content
and safe disposal guidelines.

5. Develop nonfluorinated alternatives that are neither persistent
nor toxic.

Product manufacturers:
1. Stop using PFASs where they are nonessential or when safer
alternatives exist.

2. Develop inexpensive and sensitive PFAS quantification methods
for compliance testing.

3. Label products containing PFASs, including chemical identity
and safe disposal guidelines.

4. Invest in the development and use of nonfluorinated alternatives.

Purchasing organizations, retailers, and individual consumers:
1. Whenever possible, avoid products containing, or manufac-
tured using, PFASs. These include many products that are
stain-resistant, waterproof, or nonstick.

2. Question the use of such fluorinated “performance” chemicals
added to consumer products.

The views expressed in this statement are solely those of the authors
and signatories. The authors declare they have no actual or potential competing
financial interests.

Arlene Blum,1,2 Simona A. Balan,2 Martin Scheringer,3,4 Xenia Trier,1,2 Greta Goldenman,6 Ian T. Cousins,7 Miriam Diamond,8 Tony Fletcher,8 Christopher Higgins,10 Avery E. Lindeman,11 Graham Peaselee,11 Pim van Vliet,11 Zhanyun Wang12 and Roland Weber5

1Department of Chemistry, University of California at Berkeley, Berkeley, California, USA;
2Green Science Policy Institute, Berkeley, California, USA;
3Department of Chemistry, University of Amsterdam, Amsterdam, the Netherlands;
4Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands;
5POPs Environmental Consulting, Schwäbisch Gmünd, Germany

E-mail: arlene@greensciencepolicy.org

REFERENCES

Barry V, Winquist A, Steenland K. 2013. Perfluorooctanoic acid (PFOS) exposures and incident
cancers among adults living near a chemical plant. Environ Health Perspect 121(11–
12):1313–1318; doi:10.1289/ehp.1206615.

from food-contact paper into foods and food simulants. Food Addit Contam Part A Chem

al. 2014. Carcinogenicity of perfluorooctanoic acid, tetrafluoroethylene, dichloromethane,
1,2-dichloropropane, and 1,3-propane sultone. Lancet Oncol 15(9):924–925; doi:10.1016/ S1470-2245(14)70316-X.

Björklund JA, Thurosson K, de Vitt CA. 2009. Perfluoroalkyl compounds (PFCCs) in indoor
-dust; concentrations, human exposure estimates, and sources. Environ Sci Technol

D’Elia LA, Mairuy SA. 2007. Production of perfluorinated carboxylic acids (PFCCs) from the
biotransformation of polyfluoralkyl phosphate surfactants (PAPS): exploring routes of

study within the Danish National Birth Cohort. Environ Health Perspect 115(11–
12):1677–1682; doi:10.1289/ehp.9901056.

vaccine antibody concentrations in children exposed to perfluorinated compo-

exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective

Lopez-Espinosa MJ, Mondal D, Armstrong B, Bloom MS, Fletcher T. 2012. Thyroid function and
perfluoroalkyl acids in children living near a chemical plant. Environ Health Perspect
120(7):1036–1041; doi:10.1289/ehp.1103470.

Monsanto. UN ECOSOC. 2007. Environmental health effects of fluorinated compounds. In:
line.pdf.

(PFOA) in a highly exposed population of community residents and workers in the

evidence for exposure to the perfluorinated compounds perfluorooctanesulfonic acid
(SDS), hexafluoropropionic acid, and perfluorooctanoic acid in residents living in the
proximity of a fluorotelomer fluoropolymer production facility. Environ Health Perspect
121(9):1364–1370; doi:10.1289/ehp.1205043.

perfluorinated compounds (PFCs) in serum of patients who died in a motor vehicle

Trier X, Granby K, Christensen JH. 2011. Polyfluorinated surfactants (PFCs) in paper and board
s11356-010-0439-3.

Veith M, Ensminger M, Steenland K. 2008. Perfluorooctane sulfonate and perfluorooctanoic acid
(PFCAs) in blood of children living near a chemical plant. Environ Sci Technol

teriors for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologs from 1951 to
envint.2010.06.006.

pdf.

for C4-C14 perfluoroalkyl carboxylic acids (PFCCs) from 1951 to 2003, part I: the remaining
The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs)

(Signatories as of publication date. Institutional affiliations are provided for identification purposes only.)

Ovokorey Abebe, Researcher, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
Marlene Agerstrand, PhD, Researcher, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden
Lutz Ahrens, PhD, Research Scientist, Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
Beatrix H. Aristizábal, PhD, Professor, Department of Chemical Engineering, National University of Colombia, Manizales, Colombia
Abel Arkenbout, PhD, Chairmain, ToxicoWatch Foundation, Hartlingen, the Netherlands
Misha Askren, MD, Physician, Urgent Care, Kaiser Permanente, Los Angeles, California, USA
Jannicke Bakkejord, Senior Engineer, National Institute of Nutrition and Seafood Research, Bergen, Norway
Georg Becker, PhD, Professor Emeritus, Department of Exposure and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
Thea Bechshoft, PhD, Postdoctoral Fellow, University of Southern Denmark, Odense, Denmark
Susanne Bejerot, MD, Assistant Professor, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
Stephen Bent, MD, Associate Professor of Medicine, Epidemiology and Biostatistics, and Psychiatry, University of California at San Francisco, San Francisco, California, USA
Urs Berger, PhD, Associate Professor, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden
Åke Bergman, PhD, Executive Director and Professor, Swedish Toxicology Sciences Research Centre, Södertälje, Sweden
Vladimir Beikoski, PhD, Assistant Professor, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
Emmanuelle Bichon, Scientific and Technical Support Manager, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
Filip Bjurid, PhD Student, Man–Technology–Environment Research Centre, Örebro University, Örebro, Sweden
Tara Blank, PhD, Consultant, Elixir Environmental, Ridgefield, Connecticut, USA
Daniel Borg, PhD, Toxicology Consultant, Trossa AB, Stockholm, Sweden
Carl-Gustaf Bornehag, PhD, Professor, Department of Health and Environment, Karlstad University, Karlstad, Sweden
Hindrik Bouwman, PhD, Lecturer, Zoology Group, North-West University, Mahikeng, South Africa
Lindsay Bramwell, MSc, Research Associate, Institute of Health and Society, Newcastle University, Newcastle upon Tyne, United Kingdom
Knut Breivik, PhD, Senior Scientist and Professor, NILU—Norwegian Institute for Air Research, Kjeller, Norway
Katja Broeg, PhD, Researcher, Baltic Sea Centre, Stockholm University, Stockholm, Sweden
Phil Brown, PhD, University Distinguished Professor of Sociology and Health Sciences, and Director, Social Science Environmental Health Research Institute, Northeastern University, Boston, Massachusetts, USA
Thomas Bruton, MS, PhD Student, Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA
David Camann, MS, Technical Advisor, Southwest Research Institute, San Antonio, Texas, USA
Louise Camenzuli, PhD Student, Safety and Environmental Technology Group, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
Argelia Castaño, PhD, Head of Department, Area of Environmental Toxicology, Instituto de Salud Carlos III, Majadahonda, Spain
Carmela Centeno, Industrial Development Officer, United Nations Industrial Development Organization, Vienna, Austria
Ibrahim Chaboud, PhD, Professor, Department of Toxicology, Charité–Universitätsmedizin Berlin, Berlin, Germany
Kai Hsien Chi, PhD, Associate Professor, Institute of Environmental andOccupational Health Sciences, National Yang-Ming University, Taipei, Taiwan
Eliza Chin, MD, MPH, Executive Director, American Medical Women’s Association, Reston, Virginia, USA
Carsten Christophersen, PhD, Adjunct Professor, Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
Theo Colborn (1927–2014), PhD, President Emeritus, TEDX (The Endocrine Disruption Exchange), Paonia, Colorado, USA
Terrence J. Collins, PhD, Teresa Heinz Professor of Green Chemistry, Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA; and Director, Institute for Green Science, Pittsburgh, Pennsylvania, USA
Johanna Congleton, MSPH, PhD, Senior Scientist, Environmental Working Group, Washington, DC, USA
Adrian Covaci, PhD, Professor, Toxicological Center, University of Antwerp, Antwerp, Belgium
Craig Criddle, PhD, Professor, Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
Oscar H. Fernández Cubero, Technician, National Food Center, Majadahonda, Spain
Jordi Dachs, PhD, Research Scientist, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona, Spain
Cynthia de Wit, PhD, Professor, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden
Barbara Demeneix, PhD, DSc, Professor, Department of Environmental Science, University of California, Berkeley, California, USA
Timothy Elgren, PhD, Dean of Arts and Sciences, Oberlin College, Oberlin, Ohio, USA
David Epel, PhD, Professor Emeritus, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
Ulrika Eriksson, PhD Student, Man–Technology–Environment Research Centre, Örebro University, Örebro, Sweden
Alexi Ernstoff, MS, PhD Student, Quantitative Sustainability Assessment, Technical University of Denmark, Kongens Lyngby, Denmark
Igor Eulaers, PhD Student, Department of Biology, University of Antwerp, Antwerp, Belgium
Heesoo Eun, PhD, Senior Researcher, Division of Organochemicals, National Institute for Agro-Environmental Sciences, Tsukuba, Japan
Peter Fantke, PhD, Assistant Professor, Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
Marko Filipovic, PhD, Researcher, Institute for Applied Environmental Science, Stockholm University, Stockholm, Sweden
Marie Frederiksen, Researcher, Danish Building Research Institute, Aalborg University, Copenhagen, Denmark
Carey Friedman, PhD, Postdoctoral Associate, Center for Global Change and Earth Observations, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Frederic Gallo, PhD, Senior Expert, Regional Activity Center for Sustainable Consumption and Production, Barcelona, Spain
Joseph A. Gardella, Jr, PhD, Distinguished Professor and John and Frances Larkin Professor of Chemistry, Department of Chemistry, University of Buffalo–The State University of New York, Buffalo, New York, USA
Stephen Gardner, DVM, Veterinarian, Albany Animal Hospital, Richmond, California, USA
Caroline Gaus, PhD, Professor, National Centre for Environmental Toxicology, The University of Queensland, Brisbane, Queensland, Australia
Wouter Gebbink, PhD, Researcher, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden
David Gee, PhD, Associate Fellow, Institute of Health, Environment, and Societies, Brunel University, Brunel United Kingdom
Phil Germansdefer, DHC Che, MS ChE, Director of International Sales and Marketing, Fluid Management Systems, Inc., Watertown, Massachusetts, USA
Bondi Neuma Gevao, PhD, Research Scientist, Kuwait Institute for Scientific Research, Safat, Kuwait
Melissa Gomis, MS, PhD Student, Department of Environmental Science, Stockholm University, Stockholm, Sweden
Belen Gonzalez, PhD Student, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona, Spain
Peter Gringinger, MSc, Principal, Cardiovascular, Victoria, Australia
Adam Gruchowski, PhD, Professor, Department of Analytical Chemistry, Krakow University of Technology, Krakow, Poland
Ramon Guardans, Scientific Advisor, Ministry of Agriculture, Food and Environment, Madrid, Spain
Alexey Gusev, PhD, Senior Scientist, European Monitoring and Evaluation Programme Meteorological Synthesizing Centre–East, Moscow, Russia
Arno Gutleb, PhD, Project Leader, Department of Environment and Agro-Biotechnologies, Luxembourg Institute of Science and Technology, Belvalux, Luxembourg
Tenzing Gyalpo, PhD Student, Safety and Environmental Technology Group, Institute for Chemical and Bioengineering, ETHEZ Zürich, Zürich, Switzerland
Johannes Hidrich, PhD, Head, Research Laboratory, European Union Reference Laboratory for Dioxins and PCBs in Feed and Food, Freiburg, Germany

continued >>
The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs)

(Signatories as of publication date. Institutional affiliations are provided for identification purposes only.)

Helen Häkansson, PhD, Professor of Toxicology and Chemicals Health Risk Assessment, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden

Tomas Hansson, PhD, Researcher, Department of Applied Environmental Sciences, Stockholm University, Stockholm, Sweden

Mikael Harju, PhD, Senior Scientist, NILU–Norwegian Institute for Air Research, Tromsø, Norway

Stuart Harrad, PhD, Professor of Environmental Chemistry, School of Geography, Earth and Environmental Sciences, University of Birmingham, Environmental Chemistry, School of State University, San Diego, California, USA

Sandra Huber, PhD, Senior Researcher, Environmental Chemistry, NILU–Norwegian Institute for Air Research, Tromsø, Norway

François Izeck, Direction de la Surveillance de l’Environnement, Institut Scientifique de Service Public (ISSeP), Surveillance de l’Environnement, Institute Loenersloot, the Netherlands

Ingrid Ericson Jogsten, PhD, Dr. techn., Director, Chiron AS, Trondheim, Norway

Niklas Johansson, Senior Consultant, Melca Biokonsult, Uplands Väby, Sweden

Paula Johnson, PhD, MPH, Research Scientist, California Department of Public Health, Richmond, California, USA

Jill Johnston, PhD, Postdoctoral Fellow, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

Olga-Ioanna Kalantzi, PhD, Assistant Professor, University of the Aegean, Mytilene, Greece

Anna Kärman, PhD, Associate Professor, Man–Technology–Environment Research Center, Orebro University, Orebro, Sweden

Naila Khalil, MBBS, MPH, PhD, Assistant Professor, Boomschof School of Medicine, Wright State University, Kettering, Ohio, USA

Maja Kirkegaard, PhD, Cand. Scient, Research Advisory, Head of Chemicals Group, Worldwatch Institute Europe, Copenhagen, Denmark

Jana Klancova, PhD, Professor, Research Center for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic

Sascha Krostheraus, PhD, Vice President, Science and Certification, Cradle to Cradle Products Innovation Institute, San Francisco, California, USA

Candice Kollar, LEED AP, Design Strategist, Kollar Design | EcoCreative, San Francisco, California, USA

Janna G. Koppe, PhD, Professor Emeritus of Neonatology, Emma Children’s Hospital/Academic Medical Center, University of Amsterdam, Loenenboer, the Netherlands

Ingjerd Sunde Kroghset, PhD, Postdoctoral Fellow, NILU–Norwegian Institute for Air Research, Tromsø, Norway

Petr Kukucka, PhD, Junior Researcher, Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic

Perihan Binnur Kurt Karakus, PhD, Associate Professor, Department of Environmental Engineering, Bursa Technical University, Bursa, Turkey

Henrik Kylén, PhD, Professor, Department of Thematic Studies—Environmental Change, Linköping University, Linköping, Sweden

Remi Laane, PhD, Professor, Department of Environmental Chemistry, University of Amsterdam, Delft, Voorburg, the Netherlands

Jon Sanz Landaluce, PhD, Assistant Professor, Department of Analytical Chemistry, Universidad Complutense de Madrid, Madrid, Spain

Le Thi Hai Le, PhD, Department Deputy Director, Ministry of Natural Resources and Environment, Ha Noi, Vietnam

Jong-Hyeon Lee, PhD, Director, NeoEnBiz, Gyeonggi-do, South Korea

Marike Martina Leijis, PhD, Professor, Department of Dermatology, University Hospital RWTH Aachen, Aachen, Germany

Xiaodong Li, PhD, Professor, Faculty of Engineering, Zhejiang University, Hangzhou, China

Yifan Li, PhD, Professor, International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology, Harbin, China

Danuta Ligocka, PhD, Senior Researcher, Department of Toxicology and Carcinogenesis, Noef Institute of Occupational Medicine, Łódź, Poland

Monica Lind, PhD, Scientist, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden

Lee Lippincott, PhD, Assistant Professor of Chemistry, Allied Health Sciences, Mercer County Community College, West Windsor, New Jersey, USA

Mariana Lloyd-Smith, PhD, Senior Advisor, National Toxics Network, East Ballina, New South Wales, Australia

Karin Löfstrand, PhD, Postdoctoral Fellow, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden

Rainer Lohmann, PhD, Associate Professor, Graduate School of Oceanography, University of Rhode Island, Kingston, Rhode Island, USA

Donald Lucas, PhD, Research Scientist, Lawrence Berkeley National Laboratory, Berkeley, California, USA

José Vinicio Macias, PhD, Researcher, Autonomous University of Baja California, Baja California, Mexico

Carl Mair, Magister, Senior Karl Mair, Magister, Senior Environmental Chemist, Eco Research, Bolzano, Italy

Govindan Malarvanathan, PhD, Research Scientist, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Anwerp, Antwerp, Belgium

Svetlana Malysheva, PhD, Research Scientist, Scientific Institute of Public Health, Ghent University, Brussels, Belgium

Jonathan Martin, PhD, Professor, Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta, Canada

Lisa Melymuk, PhD, Junior Researcher, Center for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic

Annelle Mendez, PhD, Student, Safety and Environmental Technology Group, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland

Tom Muir, MS, Consultant (retired), Environment Canada, Burlington, Ontario, Canada

Marie Danielle Mulder, PhD Student, Research Center for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic

Jochen Müller, PhD, Professor, National Research Centre for Environmental Toxicology, The University of Queensland, Brisbane, Queensland, Australia

Patricia Murphy, ND, LAc, Nanopathologic Physician, Portland, Oregon, USA

Takeshi Nakano, PhD, Specially Appointed Professor, Graduate School of Engineering, Osaka University, Osaka, Japan

Agnal Sangadorj, PhD, Associate Professor, Department of Chemistry, National University of Mongolia, Ulaanbaatar, Mongolia

Seth Newton, PhD, Student, Department of Applied Environmental Science, Stockholm University, Täby, Sweden

Carla Ng, PhD, Senior Scientist, Safety and Environmental Technology Group, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland

Bo Normander, PhD, Executive Director, Worldwatch Institute Europe, Copenhagen, Denmark

Kees Olie, PhD, Retired, Institute for Biodiversity and Ecosystem Dynamics, Amsterdam, the Netherlands

Bindu Panikkar, PhD, Research Associate, Arctic Institute of North America, Calgary, Alberta, Canada

Richard Peterson, PhD, Professor, Department of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin, USA

Arianna Piersanti, PhD, Lead Chemist, Food of Environmental Control Department, Istituto Zooprofilattico Sperimentale dell’Umbria e dell Marche, Perugia, Italy

Oliver Plassmann, PhD, Researcher, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden

Anuschka Polder, PhD, Scientist, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway

Arianna Piersanti, PhD, Lead Chemist, Food of Environmental Control Department, Istituto Zooprofilattico Sperimentale dell’Umbria e dell Marche, Perugia, Italy

Merle Plassmann, PhD, Researcher, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden

Anuschka Polder, PhD, Scientist, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway

continued >>
The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs)

(Signatories as of publication date. Institutional affiliations are provided for identification purposes only.)