The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs)

Blum, Arlene; Balan, Simona A.; Scheringer, Martin; Trier, Xenia; Goldenman, Grettta; Cousins, Ian T.; Diamond, Miriam L.; Fletcher, Tony; Higgins, Christopher; Lindeman, Avery E.

Total number of authors: 14

Published in:
Environmental Health Perspectives

Link to article, DOI:
10.1289/ehp.1509934

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
As scientists and other professionals from a variety of disciplines, we are concerned about the production and release into the environment of an increasing number of poly- and perfluoroalkyl substances (PFASs) for the following reasons:

1. PFASs are man-made and found everywhere. PFASs are highly persistent, as they contain perfluorinated chains that only degrade very slowly, if at all, under environmental conditions. It is documented that some polyfluorinated chemicals break down to form perfluorinated ones (D’Eon and Mabury 2007).

2. PFASs are found in the indoor and outdoor environments, wildlife, and human tissue and bodily fluids all over the globe. They are emitted via industrial processes and military and firefighting operations (Darwin 2011; Fire Fighting Foam Coalition 2014), and they migrate out of consumer products into air (Shoeib et al. 2007; Trier et al. 2011), soil (Sepulvado et al. 2011; Strynar et al. 2012), ground and surface water, and make their way into drinking water (Eschauzier et al. 2009), food (Begley et al. 2008; Titelmeier et al. 2007; Trier et al. 2011), and seafood (Eschauzier et al. 2012; Rahman et al. 2014).

3. In animal studies, some long-chain PFASs have been found to cause liver toxicity, disruption of lipid metabolism and the immune and endocrine systems, adverse neurobehavioral effects, neonatal toxicity and death, and tumors in multiple organ systems (Lau et al. 2007; Post et al. 2012). In the growing body of epidemiological evidence, some of these effects are supported by significant or suggestive associations between specific long-chain PFASs and adverse outcomes, including associations with testicular and kidney cancers (Barry et al. 2013; Benbrahim-Tallaa et al. 2014), liver malfunction (Gallo et al. 2012), hyperthyroidism (Lopez-Espinosa et al. 2012), high cholesterol (Fitz-Simon et al. 2013; Nelson et al. 2009), ulcerative colitis (Steenland et al. 2013), lower birth weight and size (Fei et al. 2007), obesity (Halldorsson et al. 2012), decreased immune response to vaccines (Grandjean et al. 2012), and reduced hormone levels and delayed puberty (Lopez-Espinosa et al. 2011).

4. Due to their high persistence, global distribution, bioaccumulation potential, and toxicity, some PFASs have been listed under the Stockholm Convention (United Nations Environment Programme 2009) as persistent organic pollutants (POPs).

5. As documented in the Helsingeon Statement (Scheringer et al. 2014),
 a. Although some of the long-chain PFASs are being regulated or phased out, the most common replacements are short-chain PFASs with similar structures, or compounds with fluorinated segments joined by ether linkages.
 b. While some shorter-chain fluorinated alternatives seem to be less bioaccumulative, they are still as environmentally persistent as long-chain substances or have persistent degradation products. Thus, a switch to short-chain and other fluorinated alternatives may not reduce the amounts of PFASs in the environment. In addition, because some of the shorter-chain PFASs are less effective, larger quantities may be needed to provide the same performance.
 c. While many fluorinated alternatives are being marketed, little information is publicly available on their chemical structures, properties, uses, and toxicological profiles.
 d. Increasing use of fluorinated alternatives will lead to increasing levels of stable perfluorinated degradation products in the environment, and possibly also in biota and humans. This would increase the risks of adverse effects on human health and the environment.

6. Initial efforts to estimate overall emissions of PFASs into the environment have been limited due to uncertainties related to product formulations, quantities of production, production locations, efficiency of emission controls, and long-term trends in production history (Wang et al. 2014).

7. The technical capacity to destroy PFASs is currently insufficient in many parts of the world.

Global action through the Montreal Protocol (United Nations Environment Programme 2012) successfully reduced the use of the highly persistent ozone-depleting chlorofluorocarbons (CFCs), thus allowing for the recovery of the ozone layer. However, many of the organohalonine replacements for CFCs are still of concern due to their high global warming potential. It is essential to learn from such past efforts and take measures at the international level to reduce the use of PFASs in products and prevent their replacement with fluorinated alternatives in order to avoid long-term harm to human health and the environment.

For these reasons, we call on the international community to cooperate in limiting the production and use of PFASs and in developing safer nonfluorinated alternatives. We therefore urge scientists, governments, chemical and product manufacturers, purchasing organizations, retailers, and consumers to take the following actions:

Scientists:

1. Assemble, in collaboration with industry and governments, a global inventory of all PFASs in use or in the environment, including precursors and degradation products, and their functionality, properties, and toxicology.

2. Develop analytical methods for the identification and quantification of additional families of PFASs, including fluorinated alternatives.

3. Continue monitoring for legacy PFASs in different matrices and for environmental reservoirs of PFASs.

4. Continue investigating the mechanisms of toxicity and exposure (e.g., sources, fate, transport, and bioaccumulation of PFASs), and improve methods for testing the safety of alternatives.

5. Bring research results to the attention of policy makers, industry, the media, and the public.

Governments:

1. Enact legislation to require only essential uses of PFASs, and enforce labeling to indicate uses.

2. Require manufacturers of PFASs to
 a. conduct more extensive toxicological testing,
 b. make chemical structures public,
 c. provide validated analytical methods for detection of PFASs, and
 d. assume extended producer responsibility and implement safe disposal of products and stockpiles containing PFASs.

3. Work with industry to develop public registries of products containing PFASs.

4. Make public annual statistical data on production, imports, and exports of PFASs.
5. Whenever possible, avoid products containing, or manufac-
tured using, PFASs in govenmment procure.
6. In collaboration with industry, ensure that an infrastructure is
in place to safely transport, dispose of, and destroy PFASs and
PFAS-containing products, and enforce these measures.

Chemical manufacturers:
1. Make data on PFASs publicly available, including chemical
structures, properties, and toxicity.
2. Provide scientists with standard samples of PFASs, including
precursors and degradation products, to enable environmental
monitoring of PFASs.
3. Work with scientists and governments to develop safe handling
methods for PFASs.
4. Provide the supply chain with documentation on PFAS content
and safe disposal guidelines.
5. Develop nonfluorinated alternatives that are neither persistent
nor toxic.

Product manufacturers:
1. Stop using PFASs where they are nonessential or when safer
alternatives exist.
2. Develop inexpensive and sensitive PFAS quantification methods
for compliance testing.
3. Label products containing PFASs, including chemical identity
and safe disposal guidelines.
4. Invest in the development and use of nonfluorinated alternatives.

Purchasing organizations, retailers, and individual consumers:
1. Whenever possible, avoid products containing, or manufactured
using, PFASs. These include many products that are
stain-resistant, waterproof, or nonstick.
2. Question the use of such fluorinated "performance" chemicals
added to consumer products.

The views expressed in this statement are solely those of the authors
and signatories. The authors declare they have no actual or potential
competing financial interests.

References

Barry V, Winquist A, Steenkland K. 2013. Perfluoroceric acid (PFCA) exposures and incident
cancers among adults living near a chemical plant. Environ Health Perspect 121(11–
12):1313–1318; doi:10.1289/ehp.12068615.
from food-contact paper into foods and food simulants. Food Addit Contam Part A Chem
al. 2014. Carcinogenicity of perfluoroceric acid, tetrfluoroethylene, dichloromethane,
1,2-dichloropropane, and 1,3-propane sulfone. Lancet Oncol 15(9):924–925; doi:10.1016/
S1470-2045(14)70316-X.

Bijlkerk JA, Thuresson K, de Wit CA. 2009. Perfluoroalkyl compounds (PFCS) in indoor
and outdoor dust: concentrations, human exposure estimates, and sources. Environ Sci Technol
Darwin RL. 2011. Estimated Inventory of PFOS-Based Aqueous Film Forming Foam (AFF).
Virginia, USA/Fire Fighting Foam Coalition. D’Este E, Malbury SA. 2007. Production of perfluorinated carboxylic acids (PFPCs) from
the bifunctionalisation of polyfluoroalkyl phosphate surfactants (PAPS): exploring routes of
processes on the removal of perfluorinated acids from the drinking water production chain.
a study within the Danish National Birth Cohort. Environ Health Perspect 115(11):1677–
1682; doi:10.1289/ehp.10506.
Fire Fighting Foam Coalition. 2014. Fact Sheet on AFF Fire Fighting Agents. Arlington, VA/Fire
[accessed 6 April 2015].
in serum lipids with a 4-year decline in serum perfluoroceric acid and perfluorocer-
perfluorocerocic acid (PFDA) and perfluorocerocic sulfonate (PFOS) concentrations and liver
function biomarkers in a population with elevated PFDA exposure. Environ Health Perspect
120(5):655–660; doi:10.1289/ehp.1104436.
Serum vaccine antibody concentrations in children exposed to perfluorocomp-
exposure to perfluorocerocin and risk of overweight at 20 years of age: a prospective
Lopez-Espinoza MJ, Mondal D, Armstrong B, Bloom MS, Fletcher T. 2012. Thyroid function and
perfluoroceric acids in children living near a chemical plant. Environ Health Perspect
120(7):1036–1041; doi:10.1289/ehp.1104370.
chemicals in soil following the land application of municipal biosolids. Environ Sci Technol
chemicals in soil following the land application of municipal biosolids. Environ Sci Technol
Peschke MF, Selma R, Cooper KR. 2012. Perfluorocericic acid (PFDA), an emerging drink-
doi:10.1016/j.envres.2012.03.007.
Rahman MF, Peidzus S, Anderson WB. 2014. Behaviour and fate of perfluoroceric and
polyfluorinated substances (PFASs) in drinking water treatment: a review. Water Res
Schirmering M, Trier X, Granby K, Christensen JH. 2011. Polyfluorinated surfactants (PFCs) in
doi:10.1021/es903342d.
Schröder F, Schmied PA, Irmay C, Plaschke T, Brinkmann K, und Jinkert D. 2007. Perfluoro-
1682; doi:10.1289/ehp.10506.
Trijp CA, Fungick K, Christensen JH. 2011. Polyfluorinated surfactants (PFS) in paper and board
s11356-010-0439-3.
Convention. Châtelaine, Switzerland:Stockholm Convention, United Nations Environment
s11356-010-0439-3.
Deplete the Ozone Layer. Nairobi, Kenya/Montreal Protocol, United Nations Environment
hp?sec_id=5[accessed 6 April 2015].
Wang Z, Cousins IT, Scheringer M, Buck RC, Hungerbühler K. 2014. Global emission inven-
tories for C4–C14 perfluoroceric acidic (PFCA) homologues from 1951 to
2010. Environmental Health Perspectives
The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs)

Signatories

(Signatories as of publication date. Institutional affiliations are provided for identification purposes only.)

Ovokereye Abafe, Researcher, School of Chemistry and Physics, University of Kwazulu-Natal, Durban, South Africa

Marlene Agerström, PhD, Researcher, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden

Lutz Ahrens, PhD, Research Scientist, Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden

Beatriz H. Aristizabal, PhD, Professor, Department of Chemical Engineering, National University of Colombia, Manizales, Colombia

Abel Arkenbout, PhD, Chairman, ToxicoWatch Foundation, Harlingen, the Netherlands

Misha Askren, MD, Physician, Urgent Care, Kaiser Permanente, Los Angeles, California, USA

Jannicke Bakkejord, Senior Engineer, National Institute of Nutrition and Seafood Research, Bergen, Norway

Georg Becker, PhD, Professor Emeritus, Department of Exposure and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway

Susanne Bejerot, PhD, Assistant Professor, Swedish Toxicology and Environmental Research Laboratory, European Union Programme Meteorological Synthesizing Centre–East, Moscow, Russia

Terrence J. Collins, PhD, Assistant Professor, Department of Environmental Health, University of Arizona, Tucson, Arizona, USA

Tzenz Gyalpo, PhD, Senior Lecturer, Centre of Agricultural Engineering and Food Safety, Bhutan, Bhutan

Joseph A. Gardella, Jr, PhD, Distinguished Professor and John and Frances Larkin Professor of Chemistry, Department of Chemistry, University of Buffalo–The State University of New York, Buffalo, New York, USA

Stephen Gardner, DVM, Veterinarian, Albany Animal Hospital, Richmond, California, USA

Caroline Gaus, PhD, Professor, National Centre for Environmental Toxicology, The University of Queensland, Brisbane, Queensland, Australia

Wouter Gebbink, PhD, Researcher, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden

Karlstad University, Karlstad, Sweden

Technical University of Denmark, Department of Analytical Chemistry, Odense, Denmark

Nantes, France

ToxicoWatch Foundation, Harlingen, the Netherlands

Technical University of Denmark, Division of Organochemicals, National Yang-Ming University, Taipei, Taiwan

National Centre for Environmental Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Johannes Congleton, MSPH, PhD, Senior Scientist, Environmental Working Group, Washington, DC, USA

Adrian Covaci, PhD, Professor, Toxicological Center, University of Almeria, Almeria, Spain

Majikeng, South Africa

Carmela Centeno, Industrial Development Officer, United Nations Industrial Development Organization, Vienna, Austria

Kongens Lyngby, Denmark

Carsten Christophersen, PhD, Adjunct Professor, Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark

Theo Colborn (1927–2014), PhD, President Emeritus, TEDX (The Endocrine Disruption Exchange), Paonia, Colorado, USA

Marie Frederiksen, Researcher, Danish Building Research Institute, Aalborg University, Copenhagen, Denmark

Copenhagen, Denmark

Frederic Gallo, PhD, Senior Expert, Regional Activity Center for Sustainable Consumption and Production, Barcelona, Spain

Johannes Hadrich, PhD, Head, Research Laboratory: European Union Reference Laboratory for Dioxins and PCBs in Feed and Food, Freiburg, Germany

Theodore Collins, PhD, Professor, Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA

Oscar H. Fernández Cubero, Technician, National Food Centre, Majadahonda, Spain

Jordiuchs, PhD Researcher, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona, Spain

Johanna Congleton, MSPH, PhD, Senior Scientist, Environmental Working Group, Washington, DC, USA

Adrian Covaci, PhD, Professor, Toxicological Center, University of Almería, Almería, Spain

Craig Criddle, PhD, Professor, Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA

Hindrik Bouwman, PhD, Lecturer, Zoology Group, North-West University, Mahikeng, South Africa

Lindsay Bramwell, MSc, Research Associate, Institute of Health and Society, Newcastle University, Newcastle upon Tyne, United Kingdom

Knut Breivik, PhD, Senior Scientist and Professor, NILU–Norwegian Institute for Air Research, Kjeller, Norway

Katja Broeg, PhD, Researcher, Baltic Sea Centre, Stockholm University, Stockholm, Sweden

Phil Brown, PhD, University Distinguished Professor of Sociology and Health Sciences, and Director, Social Science Environmental Health Research Institute, Northeastern University, Boston, Massachusetts, USA

Thomas Brunt, MS, PhD Student, Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California, USA

David Camann, MS, Teaching Advisor, Southwest Research Institute, San Antonio, Texas, USA

Louise Camenzuli, PhD Student, Safety and Environmental Technology Group, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland

Angela Castaño, PhD, Head of Department, Area of Environmental Toxicology, Instituto de Salud Carlos III, Majadahonda, Spain

Carmela Centeno, Industrial Development Officer, United Nations Industrial Development Organization, Vienna, Austria

Ibrahim Chahoud, PhD, Professor, Department of Toxicology, Charité–Universitätsmedizin Berlin, Berlin, Germany

Kai Hsien Chi, PhD, Associate Professor, Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei, Taiwan

Eliza Chin, MD, MPH, Executive Director, American Medical Women's Association, Reston, Virginia, USA

Carsten Christophersen, PhD, Adjunct Professor, Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark

Theo Colborn (1927–2014), PhD, President Emeritus, TEDX (The Endocrine Disruption Exchange), Paonia, Colorado, USA

Terrence J. Collins, PhD, Teresa Heinz Professor of Green Chemistry, Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA; and Director, Institute for Green Science, Pittsburgh, Pennsylvania, USA

Johanna Congleton, MSPH, PhD, Senior Scientist, Environmental Working Group, Washington, DC, USA
Signatories (continued)

The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs)

(Signatories as of publication date. Institutional affiliations are provided for identification purposes only.)

Malte Posselt, BSc, MS Student, German Federal Environment Agency, Berlin, Germany
Deborah O. Raphael, Director, San Francisco Department of the Environment, San Francisco, California, USA
Shay Reicher, PhD, Risk Assessment Director, Ministry of Health, Tel Aviv, Israel
Efstathios Reppas-Chrysotovinos, MEng, PhD Candidate, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden
Crystle Reul-Chen, DENV, Senior Environmental Scientist, Cal Environmental Protection Agency, Sacramento, California, USA
David Roberts, PhD, Kenan Professor of Physics, Department of Physics, Brandeis University, Waltham, Massachusetts, USA
Mary Roberts, PhD, Professor, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts, USA
Camilla Rodrigues, PhD, Researcher, Environmental Sanitation Technology Institute, Lisbon, Portugal
Otto Roots, Dr Sc nat ETH, Director of the Institute/Leading Research Scientist, Estonian Environmental Research Institute, Tallinn, Estonia
Maria Ros Rodrigo, Laboratory Technician, Instituto de Química Orgánica General-Consejo Superior de Investigaciones Científicas, Madrid, Spain
Anna Rotander, PhD, Postdoctoral Researcher, Man–Technology–Environment Research Centre, Örebro University, Örebro, Sweden; and National Research Centre for Environmental Toxicology, The University of Queensland, Brisbane, Queensland, Australia
Ruthann Rudel, MS, Director of Research, Silent Spring Institute, Newton, Massachusetts, USA
Christina Ruden, PhD, Professor, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden
Andreas Büégün Safron, MSc, PhD Candidate, Institute de Quimica, Barcelona, Spain
Amina Salamova, PhD, Research Scientist, School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
Samira Salihovic, PhD, Postdoctoral Fellow, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
Johanna Sandahl, MS, President, Swedish Society for Nature Conservation, Stockholm, Sweden
Erik Sandell, Consulting Specialist, Nab Labs Oy, Espoo, Finland
Andreas Schaeffer, PhD, Institute Director, Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
Julia Schalezyky, PhD, Senior Group Leader, Cytokinetics, South San Francisco, California, USA
Arnold Schecter, PhD, Professor, School of Public Health, University of Texas–Dallas Campus, Dallas, Texas, USA
Ted Schettler, MD, MPH, Science Director, Science and Environmental Health Network, Ames, Iowa, USA
Margret Schlumpf, Dr Sc nat ETH, Co-Director, Group for Reproductive, Endocrine and Environmental Toxicology, University of Zürich, Zürich, Switzerland
Peter Schmid, PhD, Senior Scientist, Department of Organic Chemistry, Swiss Federal Institute for Material Research and Testing, Dübendorf, Switzerland
Lara Schultes, MSc, PhD Student, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden
Susan Shaw, PhD, Professor, School of Public Health, University at Albany–State University of New York, Albany, New York, USA; and Director, Marine Environmental Research Institute, Blue Hill, Maine, USA
Omotayo Sindikku, Research Assistant, Basel Convention Coordinating Center, Ibadan, Nigeria
Line Småstuen Haug, PhD, Senior Scientist, Department of Exposure and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
Anna Sobek, PhD, Researcher, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden
Ana Sousa, PhD, Postdoctoral Researcher, Health sciences Research Centre, University of Beira Interior, Covilhã, Portugal
Martin Sperl, Technician, Austria Metall AG, Ranshofen, Austria
Thomas Steiner, PhD, CEO, MonitoringSystems GmbH, Pressbaum, Austria
Christine Steinlin, PhD Student, Safety and Environmental Technology Group, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
Alex Stone, ScD, Senior Chemist, Hazardous Waste and Toxics Reduction Program, Washington State Department of Ecology, Lacey, Washington, USA
William Stubbs, PhD Student, University of Birmingham, Edgbaston, United Kingdom
Roxana Sühring, PhD Student, Helmholtz-Zentrum Geesthacht, Lüneburg, Germany
Kimmo Suominen, PhD, Senior Researcher, Finish Food Safety Authority, Risk Assessment Research Unit, Helsinki, Finland
Rebecca Sutton, PhD, Senior Scientist, San Francisco Estuary Institute, Richmond, California, USA
Joel Svedlund, BSc, Sustainability Manager, Klettermuse AB, Arc, Sweden
David Szabo, PhD, Senior Scientist, Research and Development, Reynolds America, Winston-Salem, North Carolina, USA
Öster Tatli, Lab Manager, A&G Pur Analysis Laboratory, Izmir, Turkey
Neeta Thacker, MSc, PhD, Former Chief Scientist and Quality Manager, Analytical Instruments Division, National Environmental Engineering Research Institute, Nagpur, India
Dien Nguyen Thanh, PhD Student, Environment Preservation Research Center, Kyoto University, Kyoto, Japan
Joao Paulo Machado Torres, PhD, Associate Professor, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
Matthew Trass, PhD, Research Scientist, Phenomenex, Torrance, California, USA
Theodora Tsongas, PhD, MS, Environmental Health Scientist and Consultant, Portland, Oregon, USA
Mary Turyk, PhD, Associate Professor, Department of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, USA
Anthony C. Tweedale, MS, Consultant, Rebutting Industry Science with Knowledge Consultancy, Eastpointe, Michigan, USA
Marta Venier, PhD, Scientist, School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
Robin Vester gren, PhD, Postdoctoral Researcher, Environmental Chemistry, NILU–Norwegian Institute for Air Research, Tromsø, Norway
Stefan Voorrips, PhD, Research Manager, Flemish Institute of Technological Research, Moh, Belgium
Shu-Li Wang, PhD, Investigator and Professor, Department of Environmental Health and Occupational Medicine, National Health Research Institute, Chunan, Miaoli, Taiwan
Glens Webster, PhD, Postdoctoral Fellow, Developmental Neurosciences and Child Health, Child and Family Research Institute, and Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
Larry Weiss, MD, Chief Marketing Officer, AOBiome, LLC, San Francisco, California, USA
Philip White, Organics Analyst, Marine Institute, Galway, Ireland
Karín Wiberg, PhD, Professor, Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
Gayle Windham, PhD, Research Scientist, Division of Environmental and Occupational Health Control, California Department of Public Health, Richmond, California, USA
Hendrik Wolschke, PhD Student, Helmholtz Zentrum Geesthacht-Centre for Materials and Coastal Research, Geesthacht, Germany
Bo Yuan, PhD, Postdoctoral Fellow, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden
Elena Zaffaroni, Organics Analyst, Chelab Sri, Resina Trevixo, Italy
Lingyan Zhu, PhD, Professor, College of Environmental Science and Engineering, Nankai University, Tianjin, China
Robert Zoeller, PhD, Professor, Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA

Environmental Health Perspectives • VOLUME 123 | NUMBER 5 | May 2015