
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 10, 2021

Holographic 3D tracking of microscopic tools

Glückstad, Jesper; Villangca, Mark Jayson; Bañas, Andrew Rafael; Palima, Darwin

Published in:
Proceedings of SPIE

Link to article, DOI:
10.1117/12.2176801

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Glückstad, J., Villangca, M. J., Bañas, A. R., & Palima, D. (2015). Holographic 3D tracking of microscopic tools.
In Proceedings of SPIE: Optical Pattern Recognition XXVI (Vol. 9477). [947702] SPIE - International Society for
Optical Engineering. Proceedings of SPIE, the International Society for Optical Engineering Vol. 9477
https://doi.org/10.1117/12.2176801

https://doi.org/10.1117/12.2176801
https://orbit.dtu.dk/en/publications/0a37a6c3-26c3-460a-8f11-005fb0b79600
https://doi.org/10.1117/12.2176801


 

 

Holographic 3D tracking of microscopic tools 

Jesper Glückstad*, Mark Villangca, Andrew Bañas, Darwin Palima 
 

DTU Fotonik 
Programmable Phase Optics 

 Technical University of Denmark 
DK-2800 Kgs. Lyngby, Denmark 

*Email: jesper.gluckstad@fotonik.dtu.dk 
www.ppo.dk 

 

 

ABSTRACT 

We originally proposed and experimentally demonstrated the targeted-light delivery capability of so-called Wave-guided 
Optical Waveguides (WOWs) three years ago. As these WOWs are maneuvered in 3D space, it is important to maintain 
efficient light coupling through their integrated waveguide structures. In this work we demonstrate the use of real-time 
diffractive techniques to create focal spots that can dynamically track and couple to the WOWs during operation in a 
volume. This is done by using a phase-only spatial light modulator to encode the needed diffractive phase patterns to 
generate a plurality of dynamic coupling spots. In addition, we include our proprietary GPC Light Shaper before the 
diffractive setup to efficiently illuminate the rectangular shaped spatial light modulator by a Gaussian laser beam. The 
method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking and coupling 
for both lateral and axial displacements of the WOWs. The ability to switch from on-demand to continuous addressing 
with efficient illumination leverages our WOWs for potential applications in near-field stimulation and nonlinear optics 
at small scales. 
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1. INTRODUCTION 

Trapping and manipulation using light has progressed from a single tightly focused beam on a bead to orchestrated 
movements of multiple objects or even advanced multi-handled micro-tools1,2. Trapped objects are no longer restricted to 
a simple polystyrene bead but now extend to advanced and structured objects that can be readily fabricated using two-
photon fabrication (2PP)3. Using 2PP fabrication allows full 3D flexibility in the design of desired structures so that a 
variety of forms and tasks can be carried out. An example is the optically-actuated surface scanning probe for 
investigating surface topography4. Instead of tightly focused traps, more softly focussed counter-propagating (CP) beams 
can also be used in multi-beam trapping. We have demonstrated this using polystyrene beads5 and also with fabricated 
extended objects that were used for demonstrating real-time optical microassembly6,7. The main advantage of using CP 
beams is the use of low-NA objective lenses to relay the trapping beams to the sample volume. The large working 
distance of low-NA objectives allows the possibility of adding side-view imaging of the sample as we have previously 
integrated on our proprietary Biophotonics Workstation (BWS)8. In our recent work, we have fabricated free-floating 
waveguides that can be real-time optically manipulated in a volume coined Wave-guided Optical Waveguides (WOWs)9. 
The WOWs can serve as structure-mediated tools for redirecting light10 and for accessing targeted light delivery in 
difficult geometries. To allow dynamic coupling of light through the WOWs, we have added a diffractive setup that can 
independently modulate the coupling beams on our BWS11. Here, further improvements have been integrated by adding 
object tracking routines that allow real-time coupling to the WOWs while they are real-time manipulated in a volume. 
This leverages the capabilities of the WOWs for potential applications in near-field photo-stimulation and nonlinear 
optics at small scales. 
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4. CONCLUSIONS 

This work experimentally demonstrate dynamic and reconfigurable coupling of green laser light to so-called Wave-
guided Optical Waveguides (WOWs) by using an advanced real-time object tracking algorithm. The ability to switch 
between on-demand and continuous coupling offers a versatile approach for the WOWs for potential applications in 
near-field photo-stimulation and nonlinear optics at small scales. The addition of a proprietary GPC Light Shaper in the 
SLM-based diffractive setup allows efficient formation of high intensity light spot patterns that are desirable when 
addressing a plurality of real-time manipulated WOWs in a volume. 
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