Offshore CREYAP Part 2 – final results

Mortensen, Niels Gylling; Nielsen, Morten; Ejsing Jørgensen, Hans

Publication date:
2015

Link back to DTU Orbit

Citation (APA):
Offshore CREYAP Part 2 – final results

Niels G Mortensen, Morten Nielsen & Hans E Jørgensen

EWEA Resource Assessment 2015
Helsinki, Finland
Acknowledgements

• DONG Energy Wind Power A/S for Barrow data
• Dong Energy, Iberdrola and Crown Estate for Shell Flats wind data and other information.
• 22 teams from 8 countries; thanks for making the comparison and presentation possible!
• EWEA team for arranging the 2015 Offshore CREYAP Part 2, thanks to Tim Robinson et al.
Comparison of Resource and Energy Yield Assessment Procedures

EWEEA CREYAP concept
- Industry benchmark
- In-house training and R&D
- Identification of R&D issues

Three issues today
- Wakes and wake modelling
- Yield assessment uncertainties
- Modelled vs observed yields

CREYAP history
- Onshore Part 1, Bruxelles 2011
 - Scotland W, 28 MW, 37 teams
- Onshore Part 2, Dublin 2013
 - Scotland E, 29 MW, 60 teams
- Offshore Part 1, Frankfurt 2013
 - Gwynt y Môr, 576 MW, 37 teams
- Offshore Part 2, Helsinki 2015
 - Barrow, 90 MW, 22 teams

Summary
- 156 submissions from 27 countries
Barrow Offshore Wind Farm

- 30 V90 wind turbines (90 MW)
 - Rated power: 3.0 MW
 - Hub height: 75 m MSL
 - Rotor diameter: 90 m
 - 4 staggered rows, $5.5 \times 8.5 \ D$
 - Air density: 1.23 kg m$^{-3}$
 - SCADA: 2008-02 to 2009-01

- Site meteorological masts
 - One 80-m and 50-m mast
 - Wind speed and direction
 - Temperature and pressure
 - Data: 2011-07 to 2012-08

- Auxiliary data
 - MERRA reanalysis 1998-2013
 - Topographical data by choice
Steps in the energy yield prediction process

Reference yield → Gross yield → Potential yield

- Vertical extrapolation
- Flow modelling
- Horizontal extrapolation
- Wake modelling

Site wind observation → Site wind climate

- Long-term adjustment
- Project planning

P_x yield → Net yield

- Uncertainty modelling
- Loss estimation
Estimated turbine mean yield and wake effect (10 y)
Predicted wind farm wake losses

Data points used = 23 (of 23)

Mean wake loss = 7.9%
Standard deviation = 1.3%
Coefficient of variation = 16%
Range = 5.5 to 10.4%
Comparison of wake models

Wind farm wake loss [%]

- WindPRO Park (5)
- WASP Park (4)
- CFD-type (3)
- Ainslie EV (3)
- WindFarmer EV (2)
- Fuga (3)
- Other models (3)
- All models (23)
Wake models used

- **windPRO Park (N.O. Jensen) (5)**
 - $k = 0.04$, offshore settings, ...
- **WAsP Park (4)**
 - $k = \{0.03, 0.04, 0.05, 0.075\}$
- **CFD-type (3)**
 - OpenFoam CFDwake, CFD+linear, WindSim WM-1
- **Ainslie Eddy Viscosity (3)**
 - Quarton, + linearised CFD, +equivalent roughness
- **WindFarmer Eddy Viscosity (2)**
 - LWF correction, LWF
- **FUGA (3)**
 - Neutral, stable, unstable
- **Other models (3)**
 - OpenWind DAWM, Jensen-type+deep array+eff. turbulence, EV
Predicted turbine site wake loss
Estimated turbine yields – coefficient of variation
Predicted turbine site wake losses

[Graph showing specific model (median) wake effect vs. all models (median) wake effect]
Sensitivity to WAsP and Fuga input parameters

- Variable input parameters explain spread in wake loss predictions
- Impossible to select universal parameters which will match WAsP and Fuga results for all turbine positions
Wake modelling uncertainty

(CREYAP 1-4)

<table>
<thead>
<tr>
<th>Wind farm</th>
<th>Size</th>
<th>Layout</th>
<th>Wake loss</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onshore Hilly</td>
<td>28 MW 14 WTG</td>
<td>Irregular 3.7-4.8 D</td>
<td>6.1%</td>
<td>13%</td>
</tr>
<tr>
<td>Onshore Complex</td>
<td>29 MW 22 WTG</td>
<td>Irregular 4-5 D</td>
<td>10.3%</td>
<td>18%</td>
</tr>
<tr>
<td>Offshore Gwynt y Môr</td>
<td>576 MW 160 WTG</td>
<td>Regular 6-7 D</td>
<td>14.3%</td>
<td>37%</td>
</tr>
<tr>
<td>Offshore Barrow</td>
<td>90 MW 30 WTG</td>
<td>4 staggered 5.5 × 8.5 D</td>
<td>7.9%</td>
<td>16%</td>
</tr>
<tr>
<td>10 offshore* DONG 2015</td>
<td>90-630 MW 30-175 WTG</td>
<td>various</td>
<td>n/a</td>
<td>16%</td>
</tr>
</tbody>
</table>

* N.G. Nygaard, EWEA Offshore 2015
Net energy yield of wind farm, $P_{50} (10 \text{ y})$

Data points used = 22 (of 22)

Mean net yield = 303 GWh\text{y}^{-1}
Standard deviation = 9.4 GWh\text{y}^{-1}
Coefficient of variation = 3.1%
Range = 282 to 317 GWh\text{y}^{-1}
Wind farm key figures *(10-y estimates)*

<table>
<thead>
<tr>
<th>Barrow (10 y)</th>
<th>Mean</th>
<th>σ</th>
<th>CV*</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross yield</td>
<td>GWh</td>
<td>366</td>
<td>8.9</td>
<td>2.4</td>
<td>338</td>
</tr>
<tr>
<td>Wake loss</td>
<td>%</td>
<td>7.9</td>
<td>1.3</td>
<td>16.0</td>
<td>5.5</td>
</tr>
<tr>
<td>Potential yield</td>
<td>GWh</td>
<td>334</td>
<td>10.3</td>
<td>3.1</td>
<td>311</td>
</tr>
<tr>
<td>Technical losses</td>
<td>%</td>
<td>9.3</td>
<td>0.1</td>
<td>1.0</td>
<td>9.2</td>
</tr>
<tr>
<td>Net yield P_{50}</td>
<td>GWh</td>
<td>303</td>
<td>9.4</td>
<td>3.1</td>
<td>282</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>%</td>
<td>9.7</td>
<td>2.3</td>
<td>23.4</td>
<td>6.1</td>
</tr>
<tr>
<td>Net yield P_{90}</td>
<td>GWh</td>
<td>267</td>
<td>12.1</td>
<td>4.4</td>
<td>245</td>
</tr>
</tbody>
</table>

* Coefficient of Variation in per cent
Spread for different steps in the prediction process

Offshore CREYAP exercises Part II+I
- Barrow, 30 WTG, 90 MW (2015)
Comparison of predicted to observed P_{50} (1 year)

Data points used = 20 (of 22)

Mean predicted $P_{50} = 324$ GWh⁻¹
Standard deviation = 9.6 GWh⁻¹
Coefficient of variation = 3.0%
Range = 300 to 343 GWh⁻¹

Prediction bias = +4%
Quality assurance of submitted spreadsheets

Cross-check of P_{50}: team results compared to DTU calculation from team values.

- Net AEP (P_{90}) = Net AEP (P_{50}) − $1.282 \times$ [uncertainty estimate]

Cross-check of P_{90}: $\frac{3}{4}$ of the teams agree with DTU, but $\frac{1}{4}$ get a different result!
Sensitivity analyses for Barrow

<table>
<thead>
<tr>
<th>Offshore datums and transition piece</th>
<th>Input change</th>
<th>AEP change in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Met. mast height</td>
<td>MSL → HAT</td>
<td>+0.9</td>
</tr>
<tr>
<td>• Wind turbine hub height</td>
<td>MSL = HAT − 5 m</td>
<td>−1.1</td>
</tr>
</tbody>
</table>

Modelling parameter (examples)

| • Wake decay parameter k in Park | 0.01 in k | 0.7 |
| • Stability settings in FUGA | 1/1000 in $1/L$ | 0.5 |

Wind climatology

| • Calibration of anemometer | 1% in U | 1.3 |
| • Long-term correlation | 1% in U | 1.3 |

Power production estimation

| • Air density estimation | 1% in ρ | 0.6 |
| • Power curve / turbine specification | several | ??? |

Observed production statistics

| • Independent calculations | | 1.3 |
Summary and conclusions

• Long-term adjustment (applied twice)
 – Average effect = 5.7%, spread = 1.2%

• Wake modelling
 – Average wind farm wake effect = 7.9%, spread = 16%
 – Wake modelling spread increases with depth into wind farm
 – Wake model, version, and settings should all be specified

• Modelled vs observed 1-y yields
 – Estimated = 104% of observed, spread = 3%
 – Uncertainty of predictions within TPWind vision
 – Measured yield has an uncertainty too

• CREYAP results seem to improve over time
 – No or fewer outliers in present study
 – Uncertainty ~ 3% for net yield (P_{50})
 – But uncertainty calculations still not good enough...
Future work

• Summary and reporting on first four CREYAP exercises
 – Hilly, moderately complex and offshore covered so far
 – Abstract submitted for EWEA 2015

• Future CREYAP exercises
 – Wind resource and energy yield assessment
 – Steep or forested terrain, tall turbines, ...
 – Wind conditions and site suitability

• Comments, suggestions and ideas
 – EWEA: Lorenzo Morselli Lorenzo.Morselli@ewea.org
 – DTU: Niels G Mortensen nimo@dtu.dk

• And, as always...
 – High-quality wind farm data in high demand for future studies!
Thank you for your attention!
Who submitted results?

• 20 organisations (22 teams) from 8 countries submitted results
 – Belgium, Denmark, Germany, India, Norway, Spain, UK, US

• Names of organisations
Barrow offshore wind farm setting
Barrow offshore wind farm setting
Data analysis & presentation

Data material
• Result spreadsheets from 22 teams

Data analysis
• Quality control and reformatting
• Consistent calculations (errors, loss factors)
• Calculation of missing numbers – but no comprehensive reanalysis!

Data presentation
• Comparison of methods and models
 – Non-parametric box-whisker plot
 – Statistics (median, quartiles, IQR)
• Overall distribution of all results
 – Normal distribution fitted to the results
 – Statistics (mean, standard deviation, coefficient of variation)
• Team results for each parameter (see appendix)
Offshore CREYAP II results in two parts

Long-term comparisons (10 y)
- Observed wind climate
- Observed turbulence
- Long-term adjustment
- Reference yield
- Gross yield
- Wake effects
- Net yield P50
- Uncertainty estimates
- Net yield P90
- Per-turbine results

- Team characteristics
- Methodology information

Predicted vs observed yields (1 y)
- Reference yield
- Potential yield
- Array efficiency
- Net P50 (losses given)
- SCADA calculation
 - Sum of WTG power readings
 - Curtailment correction
 - Availability correction to 100%
 - Two independent calculations
 - Checked with sub-station meter
Comparisons of results and methods \{definitions\}

1. LT wind @ \(X\) m (mast) = Measured wind \(\pm\) [long-term adjustment]
 • comparison of long-term adjustment methods

2. LT wind @ \(Y\) m (hub height) = LT wind @ \(X\) m + [wind profile effects]
 • comparison of vertical extrapolation methods

3. Gross AEP = Reference AEP \(\pm\) [terrain effects]
 • comparison of flow models

4. Potential AEP = Gross AEP – [wake losses]
 • comparison of wake models

5. Net AEP \(P_{50}\) = Potential AEP – [technical losses]
 • comparison of technical losses estimates

6. Net AEP \(P_{90}\) = \(P_{50}\) – 1.282 \times [uncertainty estimate]
 • comparison of uncertainty estimates

7. Comparison to teams average AEP – spread and bias
Comparisons of results and methods

- Long-term correlation methods
 - MCP on site and MERRA data, no adjustment factors given by teams
- Vertical extrapolation methods
 - Wind shear exponent not important here
- Flow modelling
 - Terrain effects not reported explicitly by teams
- Wake modelling
 - Illustrated in presentation in several ways
- Systematic technical losses estimates
 - Losses prescribed by exercise
- Uncertainty estimates/modelling
 - Uncertainty components in prescribed categories
Wind-climatological inputs

Site meteorological mast
- 1 y of 10-min data (2011-12)

MERRA reanalysis data
- 16 y of hourly data (1998-2013)
Observed wind speed @ 82 m

Data points used = 21 (of 22)

Mean wind speed = 9.59 ms$^{-1}$
Standard deviation = 0.14 ms$^{-1}$
Coefficient of variation = 1.5%
Range = 9.43 to 9.76 ms$^{-1}$
Long-term wind speed @ 82 m

Data points used = 21 (of 22)

Mean wind speed = 9.37 ms\(^{-1}\)
Standard deviation = 0.10 ms\(^{-1}\)
Coefficient of variation = 1.1%
Range = 9.10 to 9.54 ms\(^{-1}\)
Wind speed uncertainty @ 82 m

Data points used = 20 (of 22)

Mean uncertainty = 0.38 ms$^{-1}$
Standard deviation = 0.17 ms$^{-1}$
Coefficient of variation = 46%
Range = 0.04 to 0.61 ms$^{-1}$

![Histogram of wind speed uncertainty](image)

![Bar graph of uncertainty on U](image)
Turbulence intensity @ 82 m

Data points used = 18 (of 22)

Mean turbulence intensity = 6.9%
Standard deviation = 0.6%
Coefficient of variation = 8.5%
Range = 6.0 to 8.1%
Long-term wind speed @ 75 m

Data points used = 21 (of 22)

Mean wind speed = 9.22 ms$^{-1}$
Standard deviation = 0.10 ms$^{-1}$
Coefficient of variation = 1.1%
Range = 8.90 to 9.39 ms$^{-1}$
Comparison of air density ρ @ hub height

Data points used = 21 (of 22)

Mean air density = 1.233 kgm$^{-3}$
Standard deviation = 0.004 kgm$^{-3}$
Coefficient of variation = 0.3%
Range = 1.226 to 1.242 kgm$^{-3}$ (1%)
Wind farm key figures – 1 year estimates

<table>
<thead>
<tr>
<th>Barrow (1 y)</th>
<th>Mean</th>
<th>σ</th>
<th>CV*</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential yield</td>
<td>GWh</td>
<td>389</td>
<td>7.0</td>
<td>1.8</td>
<td>373</td>
</tr>
<tr>
<td>Wake loss</td>
<td>%</td>
<td>7.5</td>
<td>1.1</td>
<td>14.8</td>
<td>5.2</td>
</tr>
<tr>
<td>Gross energy yield</td>
<td>GWh</td>
<td>357</td>
<td>10.7</td>
<td>3.0</td>
<td>331</td>
</tr>
<tr>
<td>Technical losses</td>
<td>%</td>
<td>9.3</td>
<td>0.1</td>
<td>1.0</td>
<td>9.2</td>
</tr>
<tr>
<td>Net energy yield P_{50}</td>
<td>GWh</td>
<td>324</td>
<td>9.6</td>
<td>3.0</td>
<td>300</td>
</tr>
<tr>
<td>Measured</td>
<td>GWh</td>
<td>308</td>
<td></td>
<td></td>
<td>312</td>
</tr>
<tr>
<td>Difference</td>
<td>%</td>
<td>5.2</td>
<td></td>
<td>3.8</td>
<td></td>
</tr>
</tbody>
</table>

* Coefficient of Variation in per cent.
Reference yield of wind farm (1 y)

Data points used = 20 (of 22)

Mean net yield = 389 GWh yr\(^{-1}\)
Standard deviation = 7.2 GWh yr\(^{-1}\)
Coefficient of variation = 1.8%
Range = 373 to 399 GWh yr\(^{-1}\)
Predicted wind farm wake losses (1 y)

Data points used = 21 (of 22)

Mean wake loss = 7.6%
Standard deviation = 1.2%
Coefficient of variation = 15%
Range = 5.2 to 9.5%
Potential yield of wind farm (1 y)

Data points used = 20 (of 22)

Mean net yield = 357 GWh y

Standard deviation = 10.7 GWh y

Coefficient of variation = 3.0%

Range = 331 to 378 GWh y

Team number
Reference yield of wind farm

Data points used = 22 (of 22)

Mean reference yield = 368 GWhy-1
Standard deviation = 6.4 GWhy-1
Coefficient of variation = 1.7%
Range = 347 to 377 GWhy-1
Gross yield of wind farm

Data points used = 22 (of 22)

Mean gross yield = 366 GWh\(^{-1}\)
Standard deviation = 8.9 GWh\(^{-1}\)
Coefficient of variation = 2.4%
Range = 338 to 377 GWh\(^{-1}\)
Potential yield of wind farm

Data points used = 20 (of 22)

Mean potential yield = 334 GWhy$^{-1}$
Standard deviation = 10.3 GWhy$^{-1}$
Coefficient of variation = 3.1%
Range = 311 to 350 GWhy$^{-1}$
Predicted turbine site energy yield
Uncertainty estimates

Data points used = 22 (of 22)

Mean uncertainty = 9.7%
Standard deviation = 2.3%
Coefficient of variation = 23%
Range = 6.1 to 14%
Uncertainty estimates by type

![Box plot showing uncertainty estimates by type.](image)
Net energy yield of wind farm, P_{90}

Data points used = 21 (of 22)

Mean net yield = 267 GWh$^{-1}$
Standard deviation = 12.2 GWh$^{-1}$
Coefficient of variation = 4.6%
Range = 245 to 282 GWh$^{-1}$
Profile of participants (the human factor)

What we know

- Number of persons in team
- Number of years in wind power industry
- Type of company
- Approximate number of wind farm projects
- Education as wind energy master or similar
- Continuing education courses in wind energy
- Courses in software tools and models used
- In-house training in wind and yield assessments
- Participation in previous CREYAP exercises

What we would like to show

- What are the main characteristics of the companies and teams?
- Do the team characteristics have a significant impact on the results?
- Which paths do the different teams follow in the prediction process?
- Different calculation practices and tools for production data statistics

Status of work

- No firm conclusions drawn yet
- Work continues and will be reported at a later stage
Legend to graphs

• Results distribution graphs
 – histograms + fitted normal distribution
 – statistics given next to graph

• Team result graphs
 – mean value is base value for histogram
 – y-axis covers a range of ±2 standard deviations
 – Absolute y-values (left) and relative (right)
 – x-axis covers teams 1-22
 – no team number indicates ‘result not submitted’

• Box-whisker plots
 – whiskers defined by lowest datum still within 1.5 IQR of the lower quartile (Q1), and highest datum still within 1.5 IQR of the upper quartile (Q3).
 – Extreme values shown with symbols
References

Offshore
