Regulating wind farms in future offshore grids

Skytte, Klaus

Publication date: 2015

Citation (APA):
Regulating wind farms in future offshore grids
Market and regulatory framework conditions

EERA jp Wind sub-programme:
Economic and social aspects of wind integration

Klaus Skytte
DTU Management Engineering
Energy Systems Analysis

Klsk@dtu.dk

EERA DeepWind '15
Trondheim, Norway
5 February 2015
Regulating future offshore grids

Currently, offshore wind parks in Europe are single-country approaches

Future **meshed** offshore grids will interconnect wind parks and countries

Research Question
How should production in offshore grids be regulated in terms of

- Market access
- Pricing rules
- Support scheme for RES
Agenda

Regulatory framework challenges

- Wind farms at meshed offshore grids
 - EU legislation, bidding zones, congestion and residual transmission capacity
 - Pricing rules?

- Main future challenges?
EU legislation

- **Priority Access** and **Priority Dispatch** for RES-E as per RES Directive (Directive 2009/28/E)

- **Congestion Management Guidelines** and **EU Target Model** as per the 3th Energy Package legislation
 - electricity should flow between price or bidding zones according to price differences.
 - cross-border flows should not be reduced to solve a country’s internal congestion
Bidding zones

- **Home country / Fixed bidding zone**: Wind farm treated as any other trader in zone A
- **Primary access / Floating bidding zone**: May choose its bidding zone
- **Offshore hub / Own bidding zone**: Bidding zone separated from zone A and B
Home country / Fixed bidding zone

- "Domiciled" in bidding zone A - Treated as any other trader in zone A
- RES support only in home country
- Limited cross-country cooperation
- Residual inter-connector capacities dispatched by TSO
Fixed bidding zone and congestion

- Flow from A to B
- Flow from B to A → Congestion

Priority leads to reduction in day-ahead interconnection capacity = residual capacity = 800 MW
Pricing rules and congestion compensation

- Lower price in high price zone (+/ ÷) Higher price in low price zone

- Only residual transmission capacity is dispatched
 - Compensation to low price country? Of 200 MW or ???
 - Always the lower price to the Wind park? The high price zone buys all capacity from low price zone?

- Who should pay? Subsidy to wind in order to displace conventional emitting power - not to increase export
Wind park's viewpoint:
Increased value of wind park.
Higher income from choosing the highest price at any time.

2) Primary access
- Floating bidding zone
- Wind park can choose its bidding zone
- Production is integrated into the most attractive of the neighbouring countries
- RES support in all countries
- Residual interconnector capacities dispatched by TSO
3) Offshore hub

- Production of wind park forms its own market area
- No market choice for the wind park
- Joint RES support for the new market area
- All interconnector capacities dispatched by TSO
Discussion: future challenges

Regulatory re-thinking

- Wind farms at meshed offshore grids
 - Bidding zones, congestion and residual transmission capacity
 - Pricing rules? Support and burden sharing
 - Who should pay? Subsidy to wind in order to displace conventional emitting power - not to increase export

- Market Design:
 - From passive to active dynamic generation / market actors. Value of ancillary services
Thank you for your interest

Klaus Skytte
klsk@dtu.dk

Energy Systems Analysis Group
DTU Management Engineering
Denmark

Questions?
Regulatory framework challenges

Market integration and flexibility
From passive to active dynamic generation / market actors

- Act to negative prices at the spot market (day-ahead)
 - Case: Change in market design from 2009: negative prices at NordPool
 - Close down of wind turbines in hours with neg prices = saved costs

- Active at the balancing markets
 Close down of wind = down regulation

😊 Case Denmark: New wind turbines gets a Feed In Premium in certain full load hours (depending on size). When down-regulation, the not "used" full load hour with support can be used later.

😊 Case Denmark: Some existing off-shore tenders have no incitements for WTs to be active in down-regulation.
😊 One (Anholt) doesn't receive FIT when negative prices.
Managing **Negative** Spot Prices

Managing **Negative** balancing Prices

Case: Downward regulation — 9 August 2014
Last year with active participation of wind turbines in ancillary service

Activations where negative regulating prices are below -50 DKK/MWh.

- 25 times
- 51 hours
Last year with active participation of wind turbines in Day Ahead market.

Protection against negative spot prices 17. August 2014.

- Day Ahead trading resulted in negative spot prices
 - Wind production was expected at high level
 - Wind production considerably lower than expected
 - Wind turbines were used actively and did not stop at all.