Generic calibration procedures and results for nacelle-based profiling lidars

Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

Publication date: 2015

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Generic calibration procedures and results for nacelle-based profiling lidars

A. Boraccio, M. Courtney and R. Wagner
DTU Wing Energy

Abstract

In power performance testing, it has been demonstrated that the effects of wind speed and direction variations over the rotor disk can no longer be neglected for large wind turbines [1]. A new generation of commercial nacelle-based lidars is now available, offering wind profiling capabilities. The use of profiling nacelle lidars to assess power performance could remove the need to erect expensive meteorology masts, especially offshore.

Developing standard procedures for power curves using lidars requires to assess lidars measurement uncertainty that is provided by a calibration. Based on the calibration results from two lidars, the Avent 5-beam Demonstrator and the Zephir Dual Mode (ZDM), we present a generic methodology to calibrate profiling nacelle lidars.

Objectives

The objectives of this work are to:

1) Develop generic calibration procedures, i.e. applicable to any type of nacelle-based lidar irrespective of their type (pulsed or continuous-wave) and design.
2) Apply the calibration procedures to both the 5-beam Demonstrator and the ZDM lidars. (see pictures below).
3) Provide calibrated lidars, since both are to be installed on nacelles of wind turbines during measurements campaigns (see www.unitte.dk), which goal is to develop procedures to assess power performance that could be applied in any type of terrain (flat or complex, onshore or offshore).

The fundamental reason for developing calibration procedures is to assign uncertainties to lidars wind measurements. Commercial applications of lidars, e.g. power performance testing or resource assessment, demand the estimation of measurement uncertainties.

Calibration procedure principles

A lidar probes the wind by emitting light through a laser beam. Aerosols contained in the atmosphere scatter part of the laser light back to the lidar. Three levels of measurands exist in a lidar:

- The “rawest” one is the time domain of electrical current induced by the backscattered light on which spectral analysis is performed.
- The Doppler spectra generated then yield the Doppler frequency. The line-of-sight (LOS) velocity – or Radial Wind Speed (RWS) – is directly proportional to the Doppler frequency.
- Finally, algorithms combine RWS measurements to derive reconstructed wind parameters, e.g. wind speed and direction, shears, veers, etc.

Two different calibration concepts can be identified, called black box and white box. The black box method directly calibrates a reconstructed output.

The white box calibration is a generic method that can be applied to all profiling nacelle lidars, in which the algorithms’ input quantities are calibrated, i.e. the RWS, the beam localisation quantities (inclinometers), and the geometry of the scanning pattern. The uncertainty estimation of any reconstructed parameter is theoretically permitted by the white box approach. Thus, we have chosen this method.

White box calibration steps, setup and results

The data required for the RWS calibration are time-averaged of: calibrated measurements of horizontal wind speed (HWS) and direction (θ); lidar RWS and beam inclination ϕ\textsubscript{physical}. These data enable a reference equivalent RWS to be obtained by projecting the HWS onto the LOS direction (LOS\textsubscript{e}):

\[\text{Ref}_{\text{eq}} \text{RWS} = \text{HWS} \cdot \cos(\phi_{\text{physical}}) \cdot \cos(\theta - \text{LOS}_{\text{dir}}) \]

\[D = 262 \text{m} \]

The LOS direction is estimated by:

1. Fitting the lidar response to the wind direction.
2. Linear regressions between the RWS and \text{Ref}_{\text{eq}} \text{RWS} using different projection angles are performed, and the RSS are reported. The accurate LOS direction corresponds to the minimum of the fitted parabola.

The calibration results (binned data) show consistent gains in the forced regression with an error of less than 0.9% for both the ZDM and the five LOS of the 5-beam Demonstrator. \(R^2 \) coefficients are all > 0.9999 and the gains vary between 1.0056 and 1.0090 (5-beam Demonstrator). For ZDM, the gain is 1.0054.

Conclusions

Calibrations results have proven to be satisfactory in both cases with a high level of agreement between the lidars’ RWS and the reference measurements, confirming the feasibility of the white box calibration. The methodology is generic and could therefore form the scientific basis of standardised nacelle lidars calibration procedures. The generic procedures, the derivation of uncertainties, will be detailed in a journal paper.

References

2. JCME 191-2012: “International Vocabulary of Meteorology – Basic and General Concepts and Associated Terms”.

Acknowledgements

This work is part of the UnitTe project (www.unitte.dk) funded by Innovation Fund Denmark.

We would also like to thank M. Harris, C. Slinger (Zephir Lidar) and M. Boquet (Avent Lidar Technology) for their support in this project. Thanks also to all DTU Wind Energy technicians who helped us developing the calibration procedures and setting up the measurement campaigns, particularly A. Ramsing Vestergaard and K. Schneider.

EWEA Resource Assessment 2015 – Helsinki 2-3 June 2015