Interdigitated Carbon Electrodes for Stem Cell Differentiation and Dopamine Detection

Bunea, Ada-Ioana; Amato, Letizia; Heiskanen, Arto; Larsen, Niels Bent; Keller, Stephan Sylvest; Emnéus, Jenny

Publication date: 2015

Document Version: Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Interdigitated Carbon Electrodes for Stem Cell Differentiation and Dopamine Detection

Ada- Ioana Bunea, Letizia Amato, Arto Heiskanen, Niels Bent Larsen, Stephan Sylvest Keller, Jenny Emméus
Produktionstorvet, Building 423, 2800 Kgs. Lyngby, Denmark
adabu@nanotech.dtu.dk

Introduction
Carbon is a material of great interest in tissue engineering and cell replacement therapies due to its high versatility and good biocompatibility. Pyrolysed 3D-carbon scaffolds have been shown to induce spontaneous differentiation of human neural stem cells into dopaminergic neurons with very high efficiency. Moreover, due to their shape and conductivity, the scaffolds also offer better opportunities for the electrochemical detection of released dopamine.

Materials and methods
Fabrication (Fig. 1) of interdigitated electrodes (IDEs) (Fig. 2) was performed using the cleanroom facilities in Danchip. SU-8 2005 was employed for obtaining a uniform layer of polymer on the bottom of the wafers – as working surface or support for the pillars – and SU-8 2075 was employed for obtaining the pillars. The polymer was crosslinked in the areas of interest by masked UV exposure – 150 mJ exposure. The obtained structures were developed and then pyrolysed at 900°C in N₂ atmosphere. Two types of IDEs were fabricated and tested: flat 2D carbon electrodes and 3D carbon electrodes with pillars on the “fingers” of the IDE (Fig. 3), with the IDE array shown in Fig. 4. Fabrication of the chip holders for the electrochemistry experiments was done using micromilling and laser ablation in the facilities at DTU Nanotech. The PCB used for interfacing the chip with the potentiostat was also designed and fabricated at DTU Nanotech (Fig. 5). Electrochemical results are shown in Fig. 6 and 7.

Conclusions
The carbon IDE show similar or even improved performances compared to gold IDE. The chips can be employed both as substrate for cell growth / differentiation and as electrochemical sensors for dopamine released from mature dopaminergic neurons. The fact that each chip has 12 electrodes allows repeated measurements on different cell populations grown in the same conditions.

References