Silicon Photonics Integrated Circuits for 5th Generation mm-Wave Wireless Communications

Rommel, Simon; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

Publication date: 2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Silicon Photonics Integrated Circuits for 5th Generation mm-Wave Wireless Communications

Silicon Photonic Integrated Circuits

Why Silicon Photonic Integrated Circuits?
Silicon-on-insulator (SOI) photonic integrated circuits (PICs) are a prime candidate for photonic integration, due to a number of factors:
- Compatible to CMOS technology and fabrication infrastructure
 - Highly accurate, high-yield and mature technology
 - Hybrid photonic and electronic integration
- Operation in the 1.3μm and 1.55μm telecommunications windows
- Large selection of photonic components available
 - Filters
 - Modulators
 - (De-)Multiplexers
 - Mach-Zehnder Interferometers
 - Splitters
 - Photodetectors
- Active components with heterogeneous integration (III/V, InP etc)

Integration of mm-Wave Transmitter
Silicon photonic integrated circuits allow integration of the mm-wave generation setup, including generation of a wavelength comb or two appropriately spaced spectral lines and the modulation for data transmission or sensing.

Photonic-Wireless mm-Wave Systems

Applications
The large bandwidth made available by the use of mm-waves and the flexibility of hybrid photonic-wireless systems benefits not only data communications but also a large range of applications in radar and sensing:

System Architectures
Optical generation and delivery of the RF signal to the antenna site allows easy realisation of system setups for both communications and sensing.

mm-Wave Wireless Transmission
Wireless transmission in the W-band based on discrete optical components is demonstrated in the lab at distances up to 70m.

Figure 2. Applications and use cases for mm-waves

Figure 3. System setups for radio-over-fibre communication and sensing systems

Figure 4. W-band wireless transmission system schematic and experimental setup

Figure 5. Large scale fading behavior of the W-band wireless channel, showing good agreement with the Friis loss model

This work is partly funded by the DFF mmW-SPRAWL project.