Second Generation Biofuel Potential in India: Sustainability Considerations

Akom, Emmanuel; Purohit, Pallav; Fischer, Gunther; Dhar, Subash

Publication date: 2013

Document Version
Peer reviewed version

Citation (APA):
Second Generation Biofuel Potential in India: Sustainability Considerations

Emmanuel Ackom, UNEP Risoe Centre, Denmark
Pallav Purohit, Gunther Fischer, International Institute for Applied Systems Analysis, Austria
Subash Dhar, UNEP Risoe Centre

8th Conference on Sustainable Development of Energy, Water and Environment Systems
24 September 2013
Dubrovnik, Croatia
Outline of presentation

• Definition, scope setting, background to biofuel sustainability discussions

• Rationale for the study & objectives

• Methodology

• Results & discussions

• Concluding recommendations
Definitions

• Focused on **Liquid biofuels**

• IEA definition of Liquid Biofuels used in the study:
 Biofuels classified either as *conventional* or *advanced* based on level of maturity

• Conventional biofuel technologies = well established processes and biofuel being produced on commercial scale. Commonly referred to as 1st Generation. E.g. sugar based ethanol, starch based ethanol, oil crop based biodiesel and straight vegetable oil

• Advanced biofuel technologies = processes that are still in R&D, pilot or demonstration phase. Usually referred to as 2nd and 3rd Generation. Eg. biofuels from lignocellulosic biomass i.e. cellulose ethanol, biomass-to-liquids diesel, algae based biofuels.
Need for policy support for 2nd generation biofuels

(Adapted from Ceres Ventures 2007)
Key sustainability concerns on biofuels

- Social & Environmental
Key concerns on biofuels

Social:
Food vs. fuel
Other SOCIAL concerns (contd.)

• Consultation & communication with local communities

• Biofuel production shall not take place on contested lands

• Compliance with national laws and ratified international laws on employment conditions and workers’ rights

• Fair wages and compensations

• Workers are informed about their rights

• Working hours are not excessive

• Freedom of association and right to collective bargaining
• No child nor forced labour, health and safety concerns,
• etc

Sources: ILO, RSB, GBEP
Major ENVIRONMENTAL concerns

• Net GHG balances
• Land use change (direct & indirect)
• Net energy balances
• Water (use and consumption)
• Biodiversity
• Soil quality & health
• Pollution (air, water, soil) – responsible use of chemicals
• Etc

Sources: Hill et. al, 2006; Searchinger et. al, 2008; Williams et. al., 2009; Ackom et. al., 2010
Why the interest in liquid biofuels?

- Volatilities in oil prices
- Uncertainties about sustained oil supplies
- Local energy security
- Rural development
- Diversification in agricultural and energy product streams
Rationale for the study

- National Policy:
 - biofuel blending targets in India

<table>
<thead>
<tr>
<th>Year</th>
<th>Petrol demand (Mt)</th>
<th>Bioethanol demand (Mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>2010</td>
<td>14.2</td>
<td>0.7</td>
</tr>
<tr>
<td>2017</td>
<td>20.8</td>
<td>2.1</td>
</tr>
<tr>
<td>>2017</td>
<td>31.1</td>
<td></td>
</tr>
</tbody>
</table>

Source: Adapted from Purohit & Fischer, 2013
Research question:

- How much of these mandated targets could be obtained from sustainably derived agricultural residue sources?

<table>
<thead>
<tr>
<th>Year</th>
<th>Petrol demand (Mt)</th>
<th>Bioethanol demand (Mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>2010</td>
<td>14.2</td>
<td>0.7</td>
</tr>
<tr>
<td>2017</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td>>2017</td>
<td>31.1</td>
<td></td>
</tr>
</tbody>
</table>
Methodology

- Using data collected in the collaborating institutions

- Crop production statistics e.g. data from Government of India, Ministry of Agriculture; Kumar et al., 2002; Ravindranath et al., 2005; Purohit et al., 2006, Purohit and Michaelowa, 2007; Purohit, 2009; Purohit & Fischer, 2013;

- Estimation of residues and ethanol bioconversion using published peer reviewed data including: OECD/IEA, 2011; Simms et. al. 2010; Ackom et. al. 2013
Results & Discussions

Cereal crop production in year 2011

Intensity and spatial distribution of cereal production in 2010-11 (tons/km²)
(Source: Purohit and Fischer, 2013)
India:

2nd Gen biofuel potential from agricultural residues

<table>
<thead>
<tr>
<th>Crop</th>
<th>Residue type</th>
<th>Prod. (tonnes)</th>
<th>RPR</th>
<th>Res. (dry wt.) (tonnes)</th>
<th>Sustain. Res. (20%)</th>
<th>Biochem. EtoH-low (litre)</th>
<th>Biochem EtoH-high (litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>Straw/husk</td>
<td>96.0E+06</td>
<td>1.8</td>
<td>173.0E+06</td>
<td>34.6E+06</td>
<td>3.8E+09</td>
<td>10.4E+09</td>
</tr>
<tr>
<td>Wheat</td>
<td>Straw</td>
<td>87.0E+06</td>
<td>1.6</td>
<td>139.0E+06</td>
<td>27.8E+06</td>
<td>3.1E+09</td>
<td>8.3E+09</td>
</tr>
<tr>
<td>Jawar</td>
<td>Stalk</td>
<td>7.0E+06</td>
<td>2.0</td>
<td>14.0E+06</td>
<td>2.8E+06</td>
<td>0.3E+09</td>
<td>0.8E+09</td>
</tr>
<tr>
<td>Surgar cane</td>
<td>Bagasse/leaves</td>
<td>342.0E+06</td>
<td>0.4</td>
<td>137.0E+06</td>
<td>27.4E+06</td>
<td>3.0E+09</td>
<td>8.2E+09</td>
</tr>
<tr>
<td>Bajra</td>
<td>Straw</td>
<td>10.40E+06</td>
<td>2.0</td>
<td>20.7E+06</td>
<td>4.1E+06</td>
<td>0.5E+09</td>
<td>1.2E+09</td>
</tr>
<tr>
<td>Maize</td>
<td>Stalk/cob</td>
<td>21.7E+06</td>
<td>2.5</td>
<td>54.3E+06</td>
<td>10.9E+06</td>
<td>1.2E+09</td>
<td>3.3E+09</td>
</tr>
<tr>
<td>Gram</td>
<td>Waste</td>
<td>8.2E+06</td>
<td>1.6</td>
<td>13.2E+06</td>
<td>2.6E+06</td>
<td>0.3E+09</td>
<td>0.8E+09</td>
</tr>
<tr>
<td>Tur (Arhar)</td>
<td>Shell/waste</td>
<td>2.9E+06</td>
<td>2.9</td>
<td>8.3E+06</td>
<td>1.7E+06</td>
<td>0.2E+09</td>
<td>0.5E+09</td>
</tr>
<tr>
<td>Other cereal</td>
<td>Stalk</td>
<td>4.6E+06</td>
<td>2.0</td>
<td>9.1E+06</td>
<td>1.8E+06</td>
<td>0.2E+09</td>
<td>0.5E+09</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of findings in addressing the research question

<table>
<thead>
<tr>
<th>Year</th>
<th>Petrol demand (Mt)</th>
<th>EtoH from residues (low)</th>
<th>EtoH from residues (high)</th>
<th>Bioethanol demand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>2010</td>
<td>14.2</td>
<td>11.8</td>
<td>31.6</td>
<td>0.7</td>
</tr>
<tr>
<td>2017</td>
<td>20.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>2017</td>
<td>31.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• India's bioethanol blending targets could be met from environmentally benign 2nd generation sources derived from agricultural residues

• However, increased investments in R&D would be required in order to bring the technology to commercial scale for this bioethanol potential in 2-G to be realised.

• Partnerships with global players would be required.
Thanks for your attention!

Emmanuel Ackom

email: emac@dtu.dk

www.unep.org

www.uneprisoe.org