Long-term (1-20 years) prediction of wind resources (WAsP)

Landberg, L.; Mortensen, N.G.; Dellwik, E.; Badger, J.; Corbett, J.-F.; Rathmann, O.; Myllerup, L.

Published in:
Introduction to wind technology

Publication date:
2006

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Long-term (1-20 years) prediction of wind resources (WAsP)

Lars Landberg, Niels Gylling Mortensen, Ebba Dellwik, Jake Badger, Jean-Francois Corbett, Ole Rathmann, Lisbeth Myllerup
Wind Energy Department
Risø National Laboratory

Overview

- WAsP
 - Problem
 - Solution
 - Models of WAsP
 - Complex terrain (RIX)
 - New WAsP
- Flow in and near forests
- Meso-scale modelling
The World according to WAsP

The problem
Thermal winds
Weibull distributions

- Fuerteventura, Canary Islands, Spain
 \(A = 1.2 \text{ m s}^{-2}, k = 2.79 \)

- Sverdrup, UK
 \(A = 15.4 \text{ m s}^{-2}, k = 2.06 \)

- Schiphol, The Netherlands
 \(A = 3.0 \text{ m s}^{-2}, k = 1.38 \)

- Mont de Marsan, France
 \(A = 2.4 \text{ m s}^{-2}, k = 1.24 \)

Annual variation

- Relative energy

- Year: 1875 to 1975
Power production basics

The WAsP Icon
Screen lay-out

WAsP-arithmetics

WAsP = OBS + ROU + ORO
Obstacles

What is an obstacle?

After Meroney (1977)
Effects of an obstacle

Reduction of wind speed in per cent due to shelter by a two-dimensional obstacle of zero porosity. Based on the expressions given by Perera (1981)

Trees and shelter belts

Porosity

in per cent or as a fraction

Open > 50%

Dense > 35%

Very dense < 35%

Solid = 0%
Specifying obstacles in WAsP

Obstacles are specified as rectangular boxes relative to the site: by two angles and two radii, their height, depth and porosity.

Obstacle viewed in WAsP

www.wasp.dk
Roughness

Equations!

\[u(z) = \frac{u_*}{\kappa} \ln \left(\frac{Z}{Z_0} \right) \]

\[G = \frac{u_*}{\kappa} \sqrt{\ln \left(\frac{u_*}{fZ_0} \right) - A} + B^2 \]
Logarithmic profile

Internal Boundary Layer (IBL)
Orography

Stream lines and turbulence over a hill

Stream lines are compressed => wind speed-up!
Askervein Hill Field Experiment

Mother of all flow-over-hill studies:
The Askervein Hill field experiment
(Benbecula Island, Outer Hebrides, Scotland)

Wind measured on masts along a line across the hill
(mast distance 100 m)

Askervein Hill velocity profile

Orography effects on wind speed profile

- Measurement
 WASP flow model
-- Other flow model

Vertical profile

Horizontal profile
of speed-up

www.wasp.dk
BZ-model: Zooming Polar Grid

Inside the BZ-flow-model of WAsP the orography is represented by a zooming polar grid.

The grid is centered around the point in focus: met-station or wind turbine site.

The resolution is highest close to the point in focus, where high resolution matters.

Flow Separation

Ex.#1: Steep but smooth hill

The flow behaves - to some extent - as if moving over a virtual hill with less steep sides =>

smaller speed-up than calculated by WAsP

Complex terrain and RIX

Outline

- Accumulation of orographic prediction errors
- WAsP basics in complex terrain
 - The similarity principle
- Case study in Portugal
 - Wind speed correlations
 - Flow separation
 - RIX and ΔRIX
 - WAsP prediction errors
 - RIX/ΔRIX configuration
 - Vertical wind profiles
 - Improving WAsP predictions in complex terrain?
Background

Accumulation of orographic prediction errors

- Application procedure
 \[U_{A} + (\Delta U_2 + E_2) = U_{Pe} \]

- Analysis procedure
 \[U_{rm} - (\Delta U_1 + E_1) = U_{A} \]

- Combined procedure, eliminating \(U_A \)
 \[(U_{rm} - \Delta U_1 + \Delta U_2) + (E_2 - E_1) = U_{Pe} \]

- The correct estimation is then made up of
 \[U_{pm} = U_{rm} - \Delta U_1 + \Delta U_2 \] (perfect prediction)
 \[U_{pe} = U_{pm} + (E_2 - E_1) \] (prediction error!)
The similarity principle

The predictor and the predicted site should be as similar as possible

- **Topographical setting**
 - Ruggedness index (RIX)
 - Elevation and exposure
 - Distance to significant roughness changes (coastline)
 - Background roughness lengths

- **Climatic conditions**
 - Same regional wind climate (synoptic and meso-scale)
 - General forcing effects
 - Atmospheric stability

This means that the basic input data should also be similar

- **WAsP map**
 - Map size
 - Contour interval
 - Accuracy and detail
 - Roughness classification
 - ...

Case study in northern Portugal
The flow behaves – to some extent – as if moving over a virtual hill with less steep slopes than the actual hill =>
actual speed-up is smaller than calculated by WAsP

Complex terrain analysis

- **Ruggedness index, RIX**
 - fraction of terrain surface which is steeper than a critical slope θ_c
 - Calculation radius ~ 3.5 km
 - Critical slope $\theta_c \sim 0.3-0.4$
 - Onset of flow separation
 - Performance envelope for WAsP is when $\text{RIX} = 0$

- **Performance indicator, ΔRIX**
 - $\Delta\text{RIX} = \text{RIX}_{\text{WTG}} - \text{RIX}_{\text{MET}}$
 - $\Delta\text{RIX} < 0 \Rightarrow \text{under-prediction}$
 - $\Delta\text{RIX} > 0 \Rightarrow \text{over-prediction}$

Prediction error vs. RIX difference

"This performance indicator provides encouraging results..."
The Ruggedness Index – revisited

- Reanalyses of the Portuguese data set
 - Larger, more detailed and accurate maps (SRTM)
 - Improved RIX calculation (WAsP or ME)
 - More calculation radii: 72 rather than 12
 - RIX configuration corresponds to WAsP BZ-model grid
 - Both the prediction errors and ΔRIX change

- Data analysis and presentation
 - Asymmetry in plot of speed error vs. ΔRIX
 - speed error was defined as $(U_p/U_m - 1)$
 - not obvious which trend line(s) to fit…
 - Substitute log(U_p/U_m) for $(U_p/U_m - 1)$
 - Easier to fit a trend line…?

Maps for RIX calculation and test

- Hand-digitised map
 - 8 by 8 km2
 - 50- and 10-m cont.

- SRTM-derived map
 - 20 km diameter
 - 50-, 10- and 5-m height contours
Wind speed error vs. ΔRIX

\[\text{Wind speed error} = \text{Port 06-10 trend line} \]

\[y = 1.508x \]
\[R^2 = 0.975 \]

\[U_p = U_m \exp(\alpha \Delta RIX) \]
where \(\alpha = 1.5 \)

\[R = 3500 \text{ m} \]
\[\theta_c = 0.3 \]
Things to test...

- Wind speed prediction error is (almost) fixed...
 - Number of sectors
 - Modelling parameters
- RIX configuration can be varied easily
 - Original configuration somewhat arbitrary
 - Different calculation radii (3, 3.5, 4, and 5 km)
 - Calculation radius that provides max. RIX?
 - Different critical slopes (0.30, 0.35, 0.40, 0.45)
 - Matrix of R^2 (coefficient of determination) for different set-up's
- Weighting RIX with wind rose frequencies

Influence of radius and critical slope

<table>
<thead>
<tr>
<th>Radius R [m]</th>
<th>Critical slope θ_c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>3000</td>
<td>0.960</td>
</tr>
<tr>
<td>3500</td>
<td>0.972</td>
</tr>
<tr>
<td>4000</td>
<td>0.971</td>
</tr>
<tr>
<td>5000</td>
<td>0.969</td>
</tr>
</tbody>
</table>

R^2 for different values of the calculation radius and critical slope.
Recalculation – best fit values

\[y = 2.406x \]
\[R^2 = 0.984 \]

\[U_p = U_m \exp(\alpha \Delta RIX) \]
where \(\alpha = 2.4 \)
\(R = 3500 \text{ m} \) and \(\theta_c = 0.4 \)

Recalculation – weighted w. wind rose

\[y = 2.370x \]
\[R^2 = 0.977 \]

\[U_p = U_m \exp(\alpha \Delta RIX) \]
where \(\alpha = 2.4 \)
\(R = 3500 \text{ m} \) and \(\theta_c = 0.4 \)
Weighted with wind rose
Vertical profile in complex terrain

Tetouan in northern Morocco, RIX = 16%

<table>
<thead>
<tr>
<th>z [m]</th>
<th>(\langle U_m \rangle) [m/s]</th>
<th>(\langle P_m \rangle) [MWh]</th>
<th>(\langle U_e \rangle) [m/s]</th>
<th>(\langle P_e \rangle) [MWh]</th>
<th>(P_e/P_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9.8</td>
<td>2643</td>
<td>9.7</td>
<td>2532</td>
<td>0.97</td>
</tr>
<tr>
<td>20</td>
<td>9.6</td>
<td>2518</td>
<td>9.5</td>
<td>2504</td>
<td>0.99</td>
</tr>
<tr>
<td>30</td>
<td>9.8</td>
<td>2616</td>
<td>9.6</td>
<td>2529</td>
<td>0.97</td>
</tr>
<tr>
<td>40</td>
<td>9.6</td>
<td>2565</td>
<td>9.6</td>
<td>2565</td>
<td>1.00 (predictor)</td>
</tr>
</tbody>
</table>

Vertical profile is predicted well because of the similarity in RIX:

\[\Delta \text{RIX} = \text{RIX}_{\text{WTG}} - \text{RIX}_{\text{MET}} = 0 \]

Improvement of AEP predictions

<table>
<thead>
<tr>
<th>Predictor/predicted</th>
<th>Port 06</th>
<th>Port 07</th>
<th>Port 08</th>
<th>Port 09</th>
<th>Port 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port 07</td>
<td>77% (11%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port 08</td>
<td>96% (12%)</td>
<td>85% (53%)</td>
<td>96% (70%)</td>
<td>96% (72%)</td>
<td>90% (89%)</td>
</tr>
<tr>
<td>Port 09</td>
<td>96% (12%)</td>
<td>85% (53%)</td>
<td>96% (70%)</td>
<td>89% (75%)</td>
<td>100% (103%)</td>
</tr>
<tr>
<td>Port 10</td>
<td>96% (12%)</td>
<td>85% (53%)</td>
<td>96% (70%)</td>
<td>96% (72%)</td>
<td>90% (89%)</td>
</tr>
<tr>
<td></td>
<td>80% (23%)</td>
<td>91% (39%)</td>
<td>95% (47%)</td>
<td>86% (23%)</td>
<td>86% (23%)</td>
</tr>
<tr>
<td></td>
<td>89% (38%)</td>
<td>95% (47%)</td>
<td>-68% (5%)</td>
<td>3% (0%)</td>
<td>3% (0%)</td>
</tr>
<tr>
<td></td>
<td>97% (42%)</td>
<td>81% (46%)</td>
<td>82% (13%)</td>
<td>4% (0%)</td>
<td>4% (0%)</td>
</tr>
</tbody>
</table>

www.wasp.dk
Conclusions

• The similarity principle
 – WASP analysis and application errors tend to cancel out
 – The SP is the most important guiding principle for WASP use
 – WASP inputs (maps) should also be similar, of course

• Ruggedness index RIX and performance indicator ΔRIX
 – Concepts supported by new data and procedures

• Relation between WASP prediction error and ΔRIX
 – Linear relation between $\log(U_p/U_m)$ and ΔRIX
 – Relation not very sensitive to calculation radius R, critical slope θ_c, or prediction height h
 – ΔRIX weighted with the wind rose does not improve the relation between $\log(U_p/U_m)$ and ΔRIX

Conclusions (cont’d)

• Extension of WASP procedures outside operational envelope
 – Requires two or more (non-similar) met. stations
 – Linear relation between $\ln(P_p/P_m)$ and ΔRIX
 – Case study AEP predictions improve significantly
 – Linear fit before extended procedure:
 • $\text{AEP}_p = -0.11 \text{AEP}_M + 2.42$
 • $R^2 = 0.01$
 – Linear fit after extended procedure:
 • $\text{AEP}_p = 1.01 \text{AEP}_M$
 • $R^2 = 0.92$

• Procedure can be applied with (2…n) met. stations
• Procedure should be tested with other data sets...
AEP [GWh] = $\mathcal{A}(\text{WAsP})$

<table>
<thead>
<tr>
<th>Predictor/predicted</th>
<th>Port 06</th>
<th>Port 07</th>
<th>Port 08</th>
<th>Port 09</th>
<th>Port 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 06</td>
<td>1.398</td>
<td>1.197</td>
<td>2.271</td>
<td>2.444</td>
<td>2.771</td>
</tr>
<tr>
<td></td>
<td>-14%</td>
<td>+62%</td>
<td>+75%</td>
<td>+98%</td>
<td></td>
</tr>
<tr>
<td>Port 07</td>
<td>1.877</td>
<td>1.670</td>
<td>2.882</td>
<td>3.078</td>
<td>3.402</td>
</tr>
<tr>
<td></td>
<td>+12%</td>
<td>+73%</td>
<td>+84%</td>
<td>+104%</td>
<td></td>
</tr>
<tr>
<td>Port 08</td>
<td>1.818</td>
<td>1.467</td>
<td>2.552</td>
<td>2.810</td>
<td>3.229</td>
</tr>
<tr>
<td></td>
<td>-29%</td>
<td>-43%</td>
<td>+10%</td>
<td>+27%</td>
<td></td>
</tr>
<tr>
<td>Port 09</td>
<td>1.434</td>
<td>1.245</td>
<td>2.290</td>
<td>2.475</td>
<td>2.882</td>
</tr>
<tr>
<td></td>
<td>-42%</td>
<td>-50%</td>
<td>-7%</td>
<td>+16%</td>
<td></td>
</tr>
<tr>
<td>Port 10</td>
<td>1.427</td>
<td>1.113</td>
<td>2.145</td>
<td>2.351</td>
<td>2.546</td>
</tr>
<tr>
<td></td>
<td>-44%</td>
<td>-56%</td>
<td>-16%</td>
<td>-8%</td>
<td></td>
</tr>
</tbody>
</table>

AEP [GWh] = $\mathcal{A}(\text{WAsP}, \Delta\text{RIX})$

<table>
<thead>
<tr>
<th>Predictor/predicted</th>
<th>Port 06</th>
<th>Port 07</th>
<th>Port 08</th>
<th>Port 09</th>
<th>Port 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 06</td>
<td>1.398</td>
<td>1.352</td>
<td>1.532</td>
<td>1.355</td>
<td>1.531</td>
</tr>
<tr>
<td></td>
<td>-3%</td>
<td>+10%</td>
<td>+3%</td>
<td>-3%</td>
<td>+9%</td>
</tr>
<tr>
<td>Port 07</td>
<td>1.661</td>
<td>1.670</td>
<td>1.720</td>
<td>1.510</td>
<td>1.663</td>
</tr>
<tr>
<td></td>
<td>-1%</td>
<td>+3%</td>
<td>+10%</td>
<td>-10%</td>
<td>-0%</td>
</tr>
<tr>
<td>Port 08</td>
<td>2.695</td>
<td>2.458</td>
<td>2.552</td>
<td>2.310</td>
<td>2.644</td>
</tr>
<tr>
<td></td>
<td>+6%</td>
<td>-4%</td>
<td>+3%</td>
<td>-10%</td>
<td>+4%</td>
</tr>
<tr>
<td>Port 09</td>
<td>2.587</td>
<td>2.538</td>
<td>2.786</td>
<td>2.475</td>
<td>2.872</td>
</tr>
<tr>
<td></td>
<td>+5%</td>
<td>+3%</td>
<td>+13%</td>
<td>+16%</td>
<td></td>
</tr>
<tr>
<td>Port 10</td>
<td>2.584</td>
<td>2.277</td>
<td>2.619</td>
<td>2.360</td>
<td>2.546</td>
</tr>
<tr>
<td></td>
<td>+1%</td>
<td>-11%</td>
<td>+3%</td>
<td>-7%</td>
<td></td>
</tr>
</tbody>
</table>
The New WAsP flow model

Objective

• Micro-scale flow model better able to handle “steep” slopes
 • current WAsP performs poorly over steep slopes (>30%)
• To replace/complement the current WAsP orography and roughness models
• Yet not too heavy computationally
Ressource prediction

- Location of turbines ≠ location of met. Masts
- Different surroundings → different wind climates:
 - Obstacles, orography, roughness

The WAsP approach

Wind climate that would be observed on a flat surface

problem

www.wasp.dk
Requirements

The new flow model must be:

- **Quick:**
 - A few hours on a PC for a predicted wind climate

- **Easy to use:**
 - Needs only limited user intervention
 - User expertise on numerical methods not required
 - Minimal number of user-input parameters

- **Stable**
 - Convergence takes place without extensive fine-tuning

Description of the model

- **Governing equations**
 - RANS equations including Coriolis term, continuity
 - Turbulence closure: variant of $k-\varepsilon$ model
 - Formulated in
 - General curvilinear coordinates
 - Strong conservation form

- **Calculation domain**
 - Vertically: entire boundary layer (~10^9 km)
 - Horizontally: ~ 20 km
 - Terrain-following grid
Example grid

- Horizontally periodic
- Flow driven by geostrophic wind at top
- Lower BC
 - law-of-the-wall
 - or no-slip when testing...

New flow model for complex terrain

- RANS equations
- limited length-scale k-ε turb model
 General curvilinear coordinates

 Linearisation: Perturbation expansion
 Zero-order equations horizontally homogeneous
 Finite difference vertically
 Zero-order solution (horizontally homogeneous)

 First-order equations
 Fractional step method: ensures P-V coupling
 Discretised first-order equations
 •Momentum transport
 •Continuity
 •Turbulent kinetic energy
 •Dissipation of TKE
 •Momentum transport w/o pressure
 •Pressure Poisson
 •Pressure correction on velocity
 First-order solution (three-dimensional)

 Complete solution

START

FINISH
Results: flat terrain

- Comparison of turbulence models:

Results – non-flat terrain

- First-order turbulence equations are not ready yet
- Still debugging first-order momentum solver

- Results presented are for “laminar” flow
 - i.e. a uniform eddy viscosity is provided artificially
 - lower boundary condition: no-slip
- In direction perpendicular to the screen:
 - Grid is uniform, no driving
 - 2D problem solved in 3D
Streamwise velocity

Zero-order solution

First-order solution

Problem with BC

Speed-up

Vertical velocity

Zero-order solution

First-order solution

www.wasp.dk
Final solution

Streamwise velocity

Vertical velocity

- Lean, mean, and, well… "room for improvement" in the accuracy department
- 512 (L) x 64 (H) x 4 (W) grid: calculation takes a few minutes

Work ahead

- Debugging and testing of the first-order momentum solver
 - Newly-discovered error in the upper/lower boundary conditions of the Poisson and projection equations
 - Re-writing terms of the first equation to include previously neglected geometry terms
 - And more...
- Debugging and testing of the turbulence closure
- Test cases, calculations, fine-tuning and analysis
Forest and wind turbines

.... is generally a bad combination...

Outline

- How is a forest different?
- Forest model parameters
- Turbine/mast close to forest
- Turbine/mast not so close to forest
How is a forest different 1?

\[z \rightarrow z - d \]

How is a forest different?

\[z (m) \]

inflection point

\[\frac{d}{u (m/s)} \]
How is a forest different?

The roughness sublayer effect

Displacement height => Forest edge effects

Problem areas
How is a forest different?

- Introduction of displacement height – porous surface in tree crown level
 1. Roughness sublayer
 2. Flow effects at forest edge

- Forests are aerodynamically much rougher than for example the sea surface

\[
0.5m < z_{0,\text{forest}} < 2.5m \\
0.01m < z_{0,\text{agric}} < 0.15m \\
10^{-3} m < z_{0,\text{sea}} < 10^{-2} m
\]
Roughness and zero displacement height

Depends on
1. The mean height of the roughness elements (trees)
2. The density of the forest

DENSE
- low roughness
- high zero displacement

SPARSE
- high roughness
- low zero displacement

The roughness sub-layer effect

DENSE
\(\ln(z-d) \)

SPARSE
\(\ln(z-d) \)
Forest edge effects

- dense
- sparse

Forest density 1

How is it parameterised?

Raupach (1992):

\[\lambda = \frac{bh}{D^2} = bh \left(\frac{n}{S} \right) \]

\[\lambda \approx \frac{LAI}{2} \]

leaf area index

www.wasp.dk
Forest density 2

Displacement height

Roughness length

Height and wind in roughness sublayer

Forest edge effect

How is forest flow parameterised?

\[\lambda = \frac{bh}{D^2} \]

- \(b \): Tree breadth
- \(h \): Tree height
- \(D \): Distance between trees

www.wasp.dk
What is close?

Close \(x < 20d \)
Not so close \(x > 20d \)

Forest edge effect should be included

Orographic effects of forest edge, mean wind
Turbulent effects of forest edge

Wind turbine not so close to a forest, $x > 20d$
IBL structure

\[
\frac{h_i}{z_{02}} \approx 0.09 \left(\frac{x}{z_{02}} \right)^{0.77}
\]
(Dellwik and Jensen, 2000, WAsP)

Wind turbine not so close to a forest, \(x > 20d \)

How far away from the forest is the forest influence of no consequence?
Scary story – low turbine in small clearing

- high roughness, no effect of clearing
- orographic effect leads to a reduction in wind
- edge effects may cause a very turbulent environment

New project: *Wind Profiles and Forest*
Use in WAsP

- Estimate λ
- Calculate z_0
- Calculate d
- Input z_0 in WAsP map
 - effect of high roughness taken into account
 - effect of IBL growth taken into account
- Subtract d from all heights (mast and turbine)

- Turbines in forest do not necessarily “see” a forest.
- Turbines outside a forest are likely to be influenced by the forest if the forest is not very far away (take care at edge!)

The logarithmic profile
The logarithmic profile

KAMM/WAsP Methodology - meso-scale modelling
Numerical Wind Atlas Methodology

- useful when long-term measurement data unavailable
- uses the principle of statistical dynamical downscaling

large-scale meteorological conditions

small-scale meteorological conditions

Need:
- tool to calculate how atmospheric flow modified by terrain
 - mesoscale model
- information about large-scale meteorological conditions
- information about terrain
 - surface elevation (orography)
 - surface roughness
KAMM – Mesoscale model

Karlsruhe Atmospheric Mesoscale Model
non-hydrostatic, regular horizontal grid, stretched vertical coordinate (terrain following)

Large-scale meteorological conditions

- NCEP/NCAR reanalysis data provides large-scale, long-term atmospheric forcing.
 - 2.5 x 2.5 degree resolution
 - 4 times daily
 - 1948 to present

Calculate profiles of
- geostrophic wind
- potential temperature
at 0, 1500, 3000, 5500 m (1965-1998)
Terrain description

Orography
- United States Geological Survey (USGS), GTOPO30 data – approx. 1km resolution.

Surface roughness
- USGS Global Land Cover Classification – approx. 1km resolution.
- Land use → surface roughness (via look-up table)

Statistical-dynamical downscaling

- We could run KAMM using 30 years of 4 times daily data as large-scale forcing conditions
 \[30 \times 365 \times 4 = 43800\] integrations
 A lot of work! ...and also repetition.

- Instead we select around 100 representative conditions, called wind classes profiles.

- Statistical-dynamical downscaling
The WAsP part in KAMM/WAsP

Example:
- simulated wind
- wind corrected to standard conditions

flat terrain with homogeneous roughness

- low roughness
- higher roughness

- orographic speed-up
- higher roughness +

~30km
Egypt – case study

Egypt calculation domains

Large domains
- 7.5 km resolution
- generalized wind class profiles

Smaller domains
- 5 km resolution
- location specific wind class profiles
Eastern Egypt: orography & roughness

Eastern Egypt: wind classes

Wind class rose
- each x indicates a different forcing of the mesoscale model
- frequency of occurrence of each wind varies within domain
Eastern Egypt: example wind class

Mean simulated wind speed at 50 m a.g.l.

Weighting of each wind class varies within domain.

Remember: resolution is 7.5 km
Eastern Egypt: wind atlas map

Mean generalized wind speed at 50 m a.g.l. above flat terrain with 0.0002 m surface roughness

- channelling
- orographic barriers

Egypt: wind resource map

Combine East and West Egypt domains
Egypt: wind atlas map

Combine East and West Egypt domains

Other domains
KAMM / WAsP Numerical Wind Atlas

- many maps can be produced, i.e.
 - wind speed and wind speed at different heights
 - Weibull A and k parameters at different heights

- output can also be used in WAsP
 - WAsP .lib files can be generated
 - for any location within domain

KAMM / WAsP Numerical Wind Atlas

El-Hekma

WAsP display of generalized wind atlas
Verification

Scatter plot for Western Desert

Wind speed at 25, 50, 100, 200 m above flat surface, 0.03 m roughness

Verification

Domain	mean absolute error on 50 m wind speed
Eastern Egypt | 9.7 %
Western Egypt | 12.9 %
North-eastern coast | 5.5 %
 (Western Egypt | 13.6 %)
Western Desert | 4.5 % 4.6 %
 (W and E Egypt | 9.7 % 6.2 %)
Gulf of Suez | 7.5 %
 (Eastern Egypt | 6.4 %)
Red Sea | 5.9 %
 (Eastern Egypt | 6.8 %)
Conclusions

The KAMM / WAsP method has been used to create numerical wind atlases for Egypt.

- 2 large domains cover all of Egypt
 - 7.5 km resolution

- 4 smaller domains cover specific regions of interest in more detail
 - 5 km resolution
 - location specific wind profiles

Conclusions

- Colour maps produced are just a graphical “slice” of the data generated by the method.

- .lib files are also generated
- WAsP can then be used to determine local effects
 - orographic speed up
 - roughness change

- Verification shows error to be around 5-10 % on wind speed.
Summary

- Wind Atlas Methodology: industry-standard (rou, oro, obs)
- Complex terrain: RIX, new WAsP
- Forest (λ)
- KAMM/WAsP (Egypt case)

Web-sites

- www.risoe.dk
- www.wasp.dk
- www.windatlas.dk
- www.prediktor.dk
- www.waspengineering.dk
- www.cleverfarm.com
- www.mesoscale.dk
- www.windpower.org