Chemical herding and in-situ burning of crude oil in a water basin in Sisimiut, Greenland

Adamopoulou, E.; van Gelderen, Laurens; Kirkelund, Gunvor Marie; Jomaas, Grunde

Publication date: 2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Chemical herding and in-situ burning of crude oil in a water basin in Sisimiut, Greenland

Eirini Adamopoulou*, Laurens van Gelderen**, Gunvor Kirkelund**, Grunde Jomaas**

* Department of Chemical Engineering, MSc Petroleum Engineering, Technical University of Denmark
** Department of Civil Engineering, Technical University of Denmark

Results

Background

In Situ-Burning is an oil spill response method based on burning the oil at the spill site. The removal efficiency of the method depends on the oil type, fate, slick thickness and the environment.\(^2\) This method has shown high burning efficiencies of over 90% in ice infested waters.\(^2\)

Fire booms are the most commonly used method for oil containment. However in the Arctic, in ice infested waters and remote areas several tradeoffs should be considered. Oil-herding agents could be an alternative method to contain and thicken the oil slicks sufficiently.

The herders are chemical agents used to contain oil slicks on the surface of open water. They can promptly spread over a water surface into a monomolecular layer due to their high spreading coefficient and pressure.\(^3\)

This project focuses on the performance of the herders in the presence of objects, simulating the presence of ice under outdoor Arctic conditions.

Experimental procedure

A 4.0 x 4.0 x 0.1 m\(^3\) basin was created in the soil and wooden planks were used to reinforce the cavity walls. A plastic sheet covered the bottom while reflecting metallic tape and aluminum foil used to cover the top layer of the plastic sheet for protection. Stones from the local area laced inside the basin to cover around 20% of the surface area. Fresh water (480 L) was used to fill the basin.

The oil was poured in the water basin and allowed to spread. After 30 min 1,200 μL of the herding surfactant distributed equally around the edges of the water basin with a micropipette.

The oil is allowed to thicken for 30 minutes prior to ignition and then ignited with a butane torch blower. The residues were collected with 3M hydrophobic absorption pads.

A camera on a 2 m high stand is used to record the spreading, herding and burning of the crude oil.

Results

Herding performance

The herder agent proved effective in significantly contracting the oil slicks. The slick area has been reduced 39%.

Obstacles effect

After the herding, besides the main oil slick, there were also individual oil slicks created around the obstacles.

Slick thickness

The used motor oil and the used motor oil – gasoline mixture were not ignitable. The motor oil probably had a high flash point reducing its tendency to burn while for the mixture, most of the ignitable gasoline was evaporated during the spreading time.

Burning efficiency

The effective burning efficiency of the DUC crude oil was 63%.

1st burn flame area: 0.96 m\(^2\)
2nd burn flame area: 0.47m\(^2\)

Conclusion

- The herder performs very good under outdoor Arctic conditions
- The herder was more effective with DUC crude oil
- Spreading and herding time is an important parameter
- Wind seriously affects the whole process (spreading, herding)
- The presence of objects negatively affects the process of herding by creating individual slicks around them. This results to more than one slicks in the spill site
- It is difficult to fully burn the oil due to the individual slicks created. It is hard to reach and ignite all of them successfully. Therefore, the burning efficiency becomes lower.
- Burning time is also increased since more than one slicks need to be ignited

Table 1. Experimental matrix

<table>
<thead>
<tr>
<th>Type of oil</th>
<th>Amount of oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment #1</td>
<td>Used motor oil</td>
</tr>
<tr>
<td>Experiment #2</td>
<td>Oil mixture (used motor oil & gasoline)</td>
</tr>
<tr>
<td>Experiment #3</td>
<td>DUC crude oil</td>
</tr>
</tbody>
</table>

Table 2. Results for the oil slick thickness

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Oil slick thickness before herding</th>
<th>Oil slick thickness after herding</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>0.19 mm</td>
<td>1.74 mm</td>
</tr>
<tr>
<td>#2</td>
<td>0.47 mm</td>
<td>1.59 mm</td>
</tr>
<tr>
<td>#3</td>
<td>0.71 mm</td>
<td>6.34 mm</td>
</tr>
</tbody>
</table>

References

Future work

Supplementary experiments are going to take place at the DTU Fire lab.

The efficiency of herders is going to be examined under different-percentages of ice coverage.