Reducing Uncertainty of Near-shore wind resource Estimates (RUNE) using wind lidars and mesoscale models

Floors, Rogier Ralph; Vasiljevic, Nikola; Lea, Guillaume; Pena Diaz, Alfredo

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Reducing Uncertainty of Near-shore wind resource Estimates (RUNE) using wind lidars and mesoscale models

EMS 2015, Sofia, Bulgaria, Coastal meteorology session

Rogier Floors, Nikola Vasiljević, Guillaume Lea, Alfredo Peña

DTU Wind Energy
Department of Wind Energy
Motivation

• Many offshore windfarms planned in near-coastal waters due to high winds and good grid connectivity
• Big uncertainty in coastal wind climate due to change in roughness and stability conditions
• Wind lidars and mesoscale models became reliable tools to study wind development
• Are mesoscale able to capture flow with sufficient accuracy in coastal areas?
Options for measurements in coastal areas

<table>
<thead>
<tr>
<th>Technique</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesoscale models</td>
<td>Cheap</td>
<td>Uncertainty of prediction up to 10%</td>
</tr>
<tr>
<td>Mesoscale models + local measurements</td>
<td>Uncertainty reduced to 3%</td>
<td></td>
</tr>
</tbody>
</table>
Which measurement solution is most cost-effective (cost vs. accuracy)?

<table>
<thead>
<tr>
<th>Technique</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesoscale models</td>
<td>Cheap</td>
<td>Uncertainty of prediction up to 10%</td>
</tr>
<tr>
<td>Mesoscale models + local measurements</td>
<td>Uncertainty reduced to 3%</td>
<td>$$$?</td>
</tr>
</tbody>
</table>
First attempt to answer the question: One or two lidars?
Lidar measurement background

A lidar can only measure a portion of the wind vector!!!
Two independent LOS measurements
Low elevation angles => neglect vertical component
With two lidars it is possible to measure:
- Horizontal wind speed
- Wind direction
Sector scan

Flow horizontally homogenous
Vertical component low ■ Neglect vertical component
Low elevation angle
Sector scan => estimate horizontal wind speed and wind direction

\[<V_{LOS}> = a \cos(\theta - b) \]
\[V_{horizontal} = a \]
\[Wind_direction = b \]
Measurement set-up RUNE, sector scan vs. Dual-Doppler

• Measurement campaign: locations chosen
• Period: October-December 2015
• Sea surface temperatures / wave parameters available (important to evaluate mesoscale model)
• Offshore floating lidar
• Onshore vertical shooting long-range lidar (wind profile 0-2000 m)
• Dual doppler setup scanning pattern from approximately 5 km up to shoreline
• Scanning lidar over same distance (range gates 50 m)
Pre-RUNE experiment, April-May 2014

- **Used filters**
 - Horizontal wind speeds from 4 to 25 m/s
 - Hard targets removal
 - Wake free sectors
 - Signal quality (-27dB < CNR < -8dB)
 - All LOS measurements for sector scan
 - 75% of samples per each LOS of sector scan

- 90 hours
- 23 hours averaging
- 140 samples
Horizontal wind speed

Cup anemometer

Two lidars (Dual-Doppler)

One lidar (Sector Scan 60°)
Horizontal wind speed

One lidar (Sector Scan 60°)

$$\sigma_{\text{dif}} = 0.32 \text{ m s}^{-1}; y = 0.99x$$

Two lidars (Dual-Doppler)

$$\sigma_{\text{dif}} = 0.1 \text{ m s}^{-1}; y = 1.0x$$

<table>
<thead>
<tr>
<th></th>
<th>Cup</th>
<th>One lidar</th>
<th>Two lidars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of samples</td>
<td>140</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Mean wind speed [m/s]</td>
<td>7.07</td>
<td>7.04</td>
<td>7.04</td>
</tr>
<tr>
<td>R^2</td>
<td>/</td>
<td>0.98</td>
<td>0.99</td>
</tr>
<tr>
<td>Difference [m/s]</td>
<td>/</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Difference [%]</td>
<td>/</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Standard deviation of the difference [m/s]</td>
<td>/</td>
<td>0.32</td>
<td>0.10</td>
</tr>
</tbody>
</table>
What is the best azimuthal angle for scanning?

- Compromise between having a very large angle giving a large part of the sinusoidal and therefore certain wind speed, but homogeneity is questionable.
- Small angle gives less certain wind speed but confined to a smaller spatial area.

Cup anemometer
Scanning lidar
Results of comparison cup anemometer@80 m vs. scanning lidar at same point for different scanning angles
Comparing the measurements and mesoscale models

- 4 months measurements from wind lidar
- Same period as RUNE experiment
- Results from 5 grid points from the WRF model
Conclusions

• One lidar will provide necessary local measurements, scanning with azimuthal angle of +/- 45 degrees seems to give good results

• If you have sufficient funds there are merits of using two lidars:
 - Higher measurement rate
 - Small portion of area sampled
 - More measurement points
 - If the flow is not horizontally homogeneous

• A high pointing accuracy is crucial in achieving reliable measurements

• Unique data set for evaluating mesoscale models

Thank you for your attention