

Design and fabrication of axial flux ferrite magnet brushless DC motor for electric twowheelers

Fasil, Muhammed; Mijatovic, Nenad; Holbøll, Joachim; Jensen, Bogi Bech; Almunia, J.; Seoane, A.; Altimira, R.

Publication date: 2015

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Fasil, M. (Author), Mijatovic, N. (Author), Holbøll, J. (Author), Jensen, B. B. (Author), Almunia, J. (Author), Seoane, A. (Author), & Altimira, R. (Author). (2015). Design and fabrication of axial flux ferrite magnet brushless DC motor for electric two-wheelers. Sound/Visual production (digital)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Design and fabrication of axial flux ferrite magnet brushless DC motor for electric two-wheelers

M. Fasil^a, N. Mijatovic^a, J. Holbøll^a, B.B. Jensen^b, J. Almunia^c, A. Seoane^c, and R. Altimira^c

^aDepartment of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark. Tel: (+45) 45 25 35 00; ^bDepartment of Science and Technology, University of the Faroe Islands, Torshavn, FO-100, Faroe Islands. Tel: +298 292560 ^cIMA S.L., Avda. Rafael Casanova 114, 08100 Mollet del Vallés, Barcelona, Spain. Tel: +34 935795415

 $f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!}$

Presented by Muhammed Fasil Ph.D. Student

DTU Electrical Engineering Department of Electrical Engineering

Background - Importance of improved ferrite magnets to the growth of electric vehicle

- There is a demand for electric vehicle (EV) propelled by environmental causes and fuel price fluctuations
- At present, performance/price factor compared to IC engine vehicles are holding back the growth of EVs

2014 US\$ per kWh

[1] B. Nykvist and M. Nilsson, "Rapidly falling costs of battery packs for electric vehicles," Nat.
 Clim. Chang., vol. 5, no. 4, pp. 329–332, Mar. 2015.

[1] B. Nykvist and M. Nilsson, "Rapidly falling costs of battery packs for electric vehicles," Nat.
 Clim. Chang., vol. 5, no. 4, pp. 329–332, Mar. 2015.

Background - Importance of improved ferrite magnets to the growth of electric vehicle

- There is a demand for electric vehicle (EV) propelled by environmental causes and fuel price fluctuations
- At present, performance/price factor compared to IC engine vehicle are holding back the growth of EV
- The cost of batteries used in electric vehicles (EVs) has been falling fast and is almost certainly well below the estimates made by many analysts in the past decade¹.
- A low cost powertrain could lead to affordable, efficient and performing EVs in market earlier than expected!
- Introduction of improved energy density ferrite magnet based PM motors is a possible solution to low-cost powertrain

[1] B. Nykvist and M. Nilsson, "Rapidly falling costs of battery packs for electric vehicles," Nat. Clim. Chang., vol. 5, no. 4, pp. 329–332, Mar. 2015. 5

Outline

- Background
- Specification of electric motor powertrain for two-wheeler
- Challenges in substituting rare earth magnet with ferrite in electrical machines
- Design details of ferrite magnet motor
- Mechanical assembly of motor
- Fabrication of the motor
- Conclusion

Specification of electric motor powertrain for two-wheeler

Emmo electric scooter [**Existing motor:** Sintered rare earth permanent magnet motor]

Specification of vehicle drive									
S.N	Name	Unit	Value						
1	Maximum vehicle mass including load	kg	130						
2	Maximum (Rated) vehicle speed	kmph	30						
3	Time to reach rated speed of vehicle	S	15						
4	Rated speed of motor	rpm	330						
5	Rated power of motor	W	700						
6	Rated torque	Nm	20						
7	Rated voltage	V	48						

Challenges in substituting rare earth magnet with ferrite DTU in electrical machines

Challenges in substituting rare earth magnet with ferrite in electrical machines

- What others are doing
 - Motor without any magnets
 - o Switched reluctance motors
 - Synchronous reluctance motors

- New topologies to that allows putting more magnet in an efficient way such as axial flux machines, dual rotor machines
- Nanopyme motor topology and configuration offers
 - Low cost position sensing and simple controller
 - Easy to wound and easy to repair modular concentrated winding
 - Direct drive with no gears offers lesser components and improved reliability

TU

		Design	de	tails							DTU
	Number of stator slots	18		Design	63	88	124	143	158	270	
	Number of rotor poles	16	2	$L_{\rm m}~({\rm mm})$	7.5	9.5	8	7	7	7.5	
	Length of airgap	$0.4\mathrm{mm}$		h(%)	0 50	10 52 5	5	0 47.5	5 45	10 47 5	
	Outer diameter of stator	$260\mathrm{mm}$	Optimised designs	$\lambda_{ m d}$ (%) $L_{ m yr}$ (mm)	50 7	52.5 7	50 7	47.5 8	45 8	47.5 8	
lta			les	$W_{\rm t}$ (mm)	11.3	, 11.9	11.3	10.8	10.2	10.8	
NS	Gross slot fill factor	50%	D	$N_{\rm c}$	24	24	24	28	22	22	
8	Width of slot opening	$1\mathrm{mm}$	Se	$D_{\rm ct}$ (mm)	2.8	2.8	2.8	2.6	2.8	2.9	
Desig	Depth of slot lip	$2\mathrm{mm}$	<u> </u>	$L_{\rm t}~({\rm mm})$	32.4	30.6	32.2	32.6	33.4	32.6	
	Depth of slot mouth	$2\mathrm{mm}$	bi	$L_{\rm a} \ ({\rm mm})$	62.2	64.4	63	63.4	63.9	64.4	
	Current density of coil	$4.5\mathrm{A}\mathrm{mm}^{-2}$	O	$R_{\rm ph} ({\rm m}\Omega)$	36 28.0	35 28.4	36 28.2	52 23.4	34 28.5	32 29.4	
	Ratio of pole arc to pole pitch			$I_{\rm ph}$ (A) $P_{\rm cu}$ (W)	28.0 56.8	28.4 56.1	28.2 57.2	23.4 56.3	28.3 55.2	29.4 55.8	
La La La La La La La La La La											Slot mouth

Mechanical assembly of the motor

Fabrication of motor - stator tooth

Fabrication of motor - stator coils

Fabrication of motor – tooth mounting assembly

Tooth holder

Tooth holder

<u>Shaft</u>

Fabrication of motor – tooth mounting assembly

Fabrication of motor – Completed stator and rotor DTU position sensor mounting

Fabrication of motor – Rotor yoke and magnet assembly

Completed motor on vehicle

Conclusion

- Introduction of improved energy density ferrite magnet based PM motors could improve the adoption rate of electric vehicles by offering low-cost powertrain
- DTU along with Nanopyme partners has fabricated and successfully completed first trial assembly of axial flux ferrite magnet motor for electric two-wheeler application
- In coming weeks DTU will fine-tune the motor assembly and integrate the motor to wheels of vehicle
- The on-board vehicle test of powertrain according to ISO 13064 standard is scheduled for October 2015. This will be followed by test bench evaluation of motor

Contact

Nenad Mijatovic Postdoc DTU Electrical Engineering Phone +45 45 25 35 07 <u>nm@elektro.dtu.dk</u> Muhammed Fasil PhD student DTU Electrical Engineering Phone +45-45-25-36-51 <u>mfasil@elektro.dtu.dk</u>

Consortium

