Effect of maghemization on the magnetic properties of nonstoichiometric pseudo-single-domain magnetite particles

Almeida, Trevor P.; Muxworthy, Adrian R.; Kasama, Takeshi; Williams, W.; Damsgaard, Christian Danvad; Frandsen, Cathrine; Pennycook, T.J.; Dunin-Borkowski, R.E.

Published in:
Geochemistry, Geophysics, Geosystems

Link to article, DOI:
10.1002/2015gc005858

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Effect of maghemization on the magnetic properties of nonstoichiometric pseudo-single-domain magnetite particles

Trevor P. Almeida¹, Adrian R. Muxworthy¹, Takeshi Kasama², Wyn Williams³, Christian Damsgaard²-⁴, Cathrine Frandsen⁴, Timothy J. Pennycook⁵-⁶-⁷, and Rafal E. Dunin-Borkowski⁸

¹Department of Earth Science and Engineering, Imperial College London, London, UK, ²Center for Electron Nanoscopy, Technical University of Denmark, Kongens Lyngby, Denmark, ³School of GeoSciences, University of Edinburgh, Edinburgh, UK, ⁴Department of Physics, CINF, Technical University of Denmark, Kongens Lyngby, Denmark, ⁵SuperSTEM Laboratory, Daresbury, UK, ⁶Department of Materials, University of Oxford, Oxford, UK, ⁷Now at Physics of Nanostructured Materials Faculty of Physics, University of Vienna, Vienna, Austria, ⁸Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich, Germany

Abstract The effect of maghemization on the magnetic properties of magnetite (Fe₃O₄) grains in the pseudo-single-domain (PSD) size range is investigated as a function of annealing temperature. X-ray diffraction and transmission electron microscopy confirm the precursor grains as Fe₃O₄ ranging from ~150 to ~250 nm in diameter, whilst Mössbauer spectrometry suggests the grains are initially near-stoichiometric. The Fe₃O₄ grains are heated to increasing reaction temperatures of 120–220°C to investigate their oxidation to maghemite (γ-Fe₂O₃). High-angle annular dark field imaging and localized electron-energy loss spectroscopy reveal slightly oxidized Fe₃O₄ grains, heated to 140°C, exhibit higher oxygen content at the surface. Off-axis electron holography allows for construction of magnetic induction maps of individual Fe₂O₃ and γ-Fe₂O₃, the domain states revert back to vortices with slightly reduced coercivity. It is argued that due to a core/shell coupling mechanism during maghemization, the directional magnetic information will still be correct; however, the intensity information will not be retained.

1. Introduction

During formation, magnetic minerals record the direction and intensity of the Earth’s magnetic field. Paleomagnetists use this information to investigate, for example, past tectonic plate motion and geomagnetic evolution. However, subsequent to formation, the constituent magnetic minerals are commonly exposed to a range of weathering conditions and environments. One of the most common weathering processes is maghemization, which is the oxidation of (titanio)magnetite at ambient temperatures, i.e., the slow oxidation of (titanio)magnetite to (titanio)maghemite [van Velzen and Zijderveld, 1995]. Maghemization is known to be very common in mid-ocean ridge basalts >2 Ma [Bleil and Petersen, 1983; Matzka et al., 2003], and understanding this general process is important as maghemization that is known to alter the original remanent magnetization [Kråsa et al., 2005].

Of the constituent magnetic minerals, particles in the single domain (SD) grain size range (<100 nm) are regarded as ideal paleomagnetic recorders because of their strong remanence and high magnetic stability, with potential relaxation times greater than that of the age of the Universe [Dunlop and Özdemir, 2001]. However, magnetic signals from rocks are often dominated by small grains with nonuniform magnetization that exhibit magnetic recording fidelities similar to those of SD grains (termed pseudo-SD (PSD)).

In this paper, the progressive oxidation/maghemization of PSD magnetite (Fe₂O₄) to maghemite (γ-Fe₂O₃) is investigated. Oxidation of PSD Fe₂O₄ grains is a critical process of alteration of remanent magnetic signals and must be fully understood to allow for reliable interpretation of paleomagnetic data. The oxidation process starts at the Fe₂O₄ surface, where Fe⁷⁺ is either partially removed from the crystal or it reacts with...
oxygen to form a new crystal layer [O'Reilly, 1984]. Further oxidation is driven by the oxidation gradient where Fe\(^{2+}\) diffuses from the interior of the grain to the surface, leaving vacancies in the interior. Hence, depending on the degree of oxidation, the Fe\(_3\)O\(_4\) grains can be altered to structures ranging from a thin oxidized \(\gamma\)-Fe\(_2\)O\(_3\) surface layer, a hetero-structured core-shell Fe\(_3\)O\(_4/\gamma\)-Fe\(_2\)O\(_3\) grain or a fully oxidized \(\gamma\)-Fe\(_2\)O\(_3\) grain.

Recent work using the transmission electron microscopy (TEM) technique of off-axis electron holography combined with environmental TEM visually showed a change in both strength and direction of remanent magnetization within PSD Fe\(_3\)O\(_4\) particles, as a consequence of in situ oxidation within the TEM [Almeida et al., 2014]. This study is very important as it directly confirmed that oxidation can modify the original magnetic signal within individual Fe\(_3\)O\(_4\) particles in the size range dominant in rocks. However, due to the reduced O\(_2\) atmosphere pressures (<10 mbar) permitted for these in situ experiments, it was necessary to use elevated temperatures (800°C) to induce oxidation and hence is not directly representative of nature. Owing to the localized aspect of this study, it was limited to analysis of only a few individual PSD Fe\(_3\)O\(_4\) particles and it is therefore perhaps incorrect to generalize this magnetic behavior to the larger numbers of grains within rocks. In this context, the ex situ oxidation of a bulk powder comprised entirely of PSD Fe\(_3\)O\(_4\) grains, at comparatively lower temperatures, is reported. The chemical and structural transformation associated with low-temperature oxidation of the PSD Fe\(_3\)O\(_4\) particles is related directly to their corresponding magnetic properties. This work is similar in objective to several previous studies [e.g., Liu et al., 2004; Ge et al., 2014]; however, unlike the previous studies, advanced TEM methods and Mössbauer spectroscopy, in addition to magnetic hysteresis and X-ray diffractometry (XRD), are applied.

2. Experimental

Synthetic Fe\(_3\)O\(_4\) particles (diameter ranging from ~150 to ~250 nm) were purchased from Nanostructured and Amorphous Materials, USA. For heating experiments, discreet samples of 30 mg native Fe\(_3\)O\(_4\) powder (Sample S1) were mixed with 20 ml ethanol in a beaker and dispersed using an ultrasonic bath. Dispersions were poured into a glass petri dish and then inserted into a temperature-controlled furnace at reaction temperatures of 120, 140, 160, 180, 200, and 220°C under ambient atmosphere (denoted as Samples S120–S220). To promote a uniform powder distribution, dispersions were heated until the ethanol had evaporated (~5 to 10 min), leaving a thin layer of powder, and subsequently heated for a further 2 h. After heating, the petri dish was removed and the dry reaction products were allowed to cool at room temperature.

The synthesized reaction products were deposited onto single crystal silicon substrates for crystallographic identification using XRD (PANalytical X'Pert PRO Diffractometer). For the purpose of TEM, the particles were dispersed in acetone using an ultrasonic bath before deposition onto lacey carbon/copper mesh support grids (Agar Scientific Ltd., UK). Conventional diffraction contrast imaging was performed using an FEI Titan TEM operated at 300 kV (Center for Electron Nanoscopy (CEN), Technical University of Denmark) and selected area electron diffraction (SAED) patterns allowed for phase identification. Electron-energy loss spectroscopy (EELS) analysis was performed at an energy resolution of ~0.3 eV, achieved through excitation of the monochromator, to provide information on sample oxidation state. High-angle annular dark field (HAADF) high-resolution scanning TEM (STEM) analysis was performed using a Nion UltraSTEM 100 at 100 kV (SuperSTEM, STFC Daresbury Laboratories, Daresbury, UK). EELS analysis was performed to measure the oxygen/Fe ratio and was quantified using Digital Micrograph software. The background signal was subtracted and, using the signal quantification parameters determined by the software, the relative area densities in the EEL spectra allowed the relative atomic ratios to be calculated. For the purpose of off-axis electron holography [Dunin-Borkowski et al., 1998], an FEI Titan with a Cs probe corrector on the condenser lens, equipped with a Lorentz lens and biprism, was used at 300 kV (CEN). Off-axis electron holograms were recorded in Lorentz mode with the objective lens switched off and the specimen in magnetic-field-free conditions at room temperature. Mean inner potential contributions to the recorded phase shift were removed by using in situ magnetization reversal [Kasama et al., 2011].

The magnetic measurements were conducted at the Natural Magnetism Group Laboratory at the Imperial College London and Technical University of Denmark. High-temperature thermomagnetic curves were measured using a Princeton Measurements vibrating sample magnetometer (VSM) fitted with a furnace.
and heating was performed in flowing He. First-order reversal curve (FORC) diagrams and 57Fe Mössbauer spectra were acquired from the reaction products at room temperature. The Mössbauer spectra are calibrated relative to γ-Fe at room temperature.

3. Results

3.1. X-Ray Diffraction Analysis

The XRD patterns of Figure 1 illustrate the effect of increasing temperature on the crystallography of the reaction products. The peaks in the XRD pattern of Samples S1 are in good agreement with the presence of Fe$_3$O$_4$ (Joint Committee on Powder Diffraction standards (JCPDS) 75-449). Samples S120 and S140 exhibit XRD patterns similar to S1, whilst development of small peaks characteristic to c-Fe$_2$O$_3$ (JCPDS 8-7119), can be seen with increasing reaction temperature in Samples S160–S220. The findings are in agreement with those of Ge et al. [2014] who made similar heating experiments for grains that were C_{24}80 to 240 nm in diameter. In addition, the 2θ values were used to determine the interplanar lattice spacing (d) for the (220), (311), (400), (511), and (440) sets of lattice planes. The lattice parameter (a) was calculated from each set of (hkl) using the equation for the cubic crystal unit cell [Cullity and Stock, 2001], and the average was determined. The change in lattice parameter a as a function of reaction temperature is summarized in Table 1.

3.2. Transmission Electron Microscopy

Figure 2 provides information on the size, morphology, and crystallographic phase of the initial Fe$_3$O$_4$ precursor (Sample S1), along with the c-Fe$_2$O$_3$ sample (S220), produced by heating to 220°C (Sample S220). The bright-field (BF) images of Sample S1 (Figure 2a) displays generally isotropic Fe$_3$O$_4$ grains (C_{150} to C_{250} nm in diameter), as confirmed by SAED (Figure 2a, inset). EELS analysis of the O 1s K edge, in the region 520–580 eV (Figure 2c), is indicative of Fe$_3$O$_4$ and composed of a prepeak (labeled a); a broad edge at higher energy (labeled b); along with higher-energy-loss structures, lying at about 548 eV (labeled c); and 563–565 eV (labeled d). Prepeak (a) results from the hybridization of Fe 3d and O 2p and usually splits into t2g and eg states by the ligand field. Peak (b) is composed of density of states from oxygen p character hybridized with metal 4s and 4p states [Colliex et al., 1991]. The higher-energy-loss maxima in the fine structures (labeled c and d) are induced during the final state of the emitted electron, described as superposition, on the core-excited site, of an outgoing wave and of the multiple backscattered waves on the successive shells of neighboring oxygen ions [Colliex et al., 1991]. EELS analysis of the Fe 2p L$_{2,3}$ edge, in the region 704–726 eV (Figure 2d), confirmed the assignment of Fe$_3$O$_4$. The L$_2$ edge for this sample shows the typical shape of a mixed-valence compound, i.e., three visible features of differing intensities (Figure 2d, black arrows), whilst the almost shapeless L$_3$ edge is attributed to the combined spectral contributions of different iron sites (i.e., Fe$^{2+}$ at octahedral B-sites and Fe$^{3+}$ at both tetrahedral A and octahedral B-sites), consistent with the more delocalized structure of Fe$_3$O$_4$, as compared with other mixed iron oxides [Crocombette et al., 1995; Fujii et al., 1999].

Figure 2b displays the c-Fe$_2$O$_3$ grains formed after heating at 220°C for 2 h (Sample S220), as confirmed by SAED.
The alteration and development of fine features in the EEL spectra of Sample S220 are indicative of a change in the Fe oxidation state toward γ-Fe_2O_3 or α-Fe_2O_3 [Chen et al., 2004; Gloter et al., 2003; van Aken and Lauterbach, 2003]. An increase in the relative intensity of prepeak (a) in the O K edge with respect to the absorption maximum (b) (Figure 2c, Sample S220) is suggestive of oxidation to γ-Fe_2O_3. Similarly, it is recognized that development of a small prepeak in the L$_3$ edge and post-peak in the L$_2$ edge of the Fe 2p L edge (Figure 2d, red arrows) are indicative of oxidation, with complete oxidation to γ-Fe_2O_3 being associated with a \sim1.3 eV splitting in the L$_3$ edge [Chen et al., 2009].

The HAADF images of Figure 3 provide a closer examination of an individual Fe$_3$O$_4$ grain that was heated at 1400°C (Sample S140). Figure 3a shows the grain to be rectangular in this projection, with approximate dimensions of \sim130 nm long and \sim110 nm wide. Higher magnification of the boxed region in Figure 3a is displayed in Figure 3b and highlights the characteristic lattice fringes of the (111) set of planes (inset). EEL spectra were acquired from the center, near-edge, and surface regions labeled A, B, and C, respectively, and the associated atomic weight composition (at %) was quantitatively determined from each cumulative EEL spectrum (summarized in Table 2). The data are suggestive of a slightly higher O content present at the surface of the nominally magnetite grain than at its near-edge and center.

Off-axis electron holography allowed for the imaging of the in-plane magnetization of Samples S1 and S220 and is presented in Figures 4 and 5. Figure 4a displays a BF TEM image of an individual native Fe$_3$O$_4$ grain (\sim180 nm in diameter) in Sample S1, where the corresponding magnetic induction map (Figure 4b) shows a magnetic vortex and stray magnetic field, revealing its PSD (vortex) nature. Similarly, the BF TEM image of
Figure 5a displays an individual γ-Fe₂O₃ grain (~200 nm in diameter) in Sample S220, where the corresponding magnetic induction map (Figure 5b) again reveals its PSD (vortex) nature.

3.3. Magnetic Properties

The Mössbauer spectra of Figure 6, acquired at room temperature, depict the transition from nonstoichiometric Fe₃O₄ to γ-Fe₂O₃ as a function of increasing reaction temperature. Mössbauer parameters were determined by fitting two sextets, St₁ (red) and St₂ (blue), with area ratios of the lines constrained to 3:2:1:2:3 for both sextets, using a Lorentzian fitting program called mfit (Table 3). The oxidation state from magnetite to maghemite of the samples was estimated as the magnetite content (wt %) in a magnetite-maghemite mixture, by considering the weighted average isomer shift \(\delta_{\text{aver}} \) of the two sextets (Table 3) and using the linear relationship determined in Da Costa et al. [2014]:

\[
\delta_{\text{aver}} \ (\text{mm/s}) = 0.335 + 0.00215 \times \text{magnetite (wt %)}
\]

The uncertainty of this model is estimated to about 5 wt % magnetite, given that \(\delta_{\text{aver}} \) is determined with an error of 0.01 mm/s. The two sextets in the spectrum of S1 exhibit hyperfine parameters which at first may appear similar to pure Fe₃O₄, but the weighted average isomer shift of 0.46 mm/s (cf. \(\delta_{\text{aver}} = 0.55 \) mm/s for pure magnetite) and the relative spectral area of the two sextets of 0.93 (cf. \(St_1/St_2 = 1.9 \) for pure magnetite) [Da Costa et al., 2014] suggest nonstoichiometric magnetite. Using the model of Da Costa et al. [2014], a magnetite content of 59% for Sample S1 is obtained. The spectra of Samples S120–S200 demonstrate further reduction in magnetite content and correspondingly oxidation to maghemite with increasing reaction temperature, as shown in Figure 7a and summarized in Table 3. Samples S200 and S220 display a typical spectrum of γ-Fe₂O₃, composed of two sextets with very similar hyperfine parameters [Da Costa et al., 1995]. In addition, the oxidation parameter \(z \) was determined by comparing the \(F_B/F_A \) ratios in Table 3 to the average of the experimental data in Ramdani et al. [1987] and Schmidbauer and Keller [2006], where the oxidation parameter \(z \) varies from 0 to 1, representing a transformation from Fe₃O₄ (\(z = 0 \)) to γ-Fe₂O₃ (\(z = 1 \)) [Readman and O’Reilly, 1972; Ge et al., 2014]. The relationship between the oxidation parameter \(z \) and the lattice parameter \(a \) is shown is Figure 7b, where \(z \) is shown to increase with the decreasing size of the cubic unit cell.

Figure 8 provides information on the effect of reaction temperature on the magnetic hysteresis of the
reaction products and FORC diagrams of Samples S1 and S220. The coercivity (B_c) distribution in each sample is shown by horizontal profiles along the B_u axis of FORC data measured from Samples S1–S220 (Figure 8a). In addition, the measured values for coercivity of remanence (B_{cr}) and B_c are summarized in Table 4. A general trend of increasing B_{cr} values and B_c profiles with reaction temperature and oxidation can be seen up to 180°C, and exhibits a marked decrease thereafter, which is in agreement with the study of Ge et al. [2014]. The ratios of M_{sd}/M_s versus H_{cr}/H_c are plotted in Figure 8b (a "Day plot" [Day et al., 1977]) for the different reaction products. All the samples lie within the PSD region [Dunlop, 2002], however, Sample S220 plots distinctly toward the SD region, in agreement with the previous studies [Liu et al., 2004]. The FORC diagram of Sample S1 (Figure 8c) displayed PSD/SD type behavior with a distinct peak centered at a B_c value of ~24 mT [Muxworthy and Dunlop, 2002]. The peak in the FORC diagram of Sample S220 (Figure 8d) depicts similar behavior, but is centered at a lower B_c value of ~18 mT.

Curie temperatures (T_C) were determined using the second-derivative method [Tauxe, 1998] and the relationship with oxidation parameter z is presented in Figure 9a. Values of T_C were calculated as 583 ± 5°C for Samples S1 and S120, which is marginally above that of stoichiometric Fe$_3$O$_4$ [Dunlop and Ozdemir, 2001]. The T_C of Samples S140 and S160 was slightly higher and a linear increase of T_C with temperature can be seen in Samples S180–S220, with a maximum T_C of 649 ± 5°C, which is in good agreement with that of γ-Fe$_2$O$_3$ [Dunlop and Ozdemir, 2001]. This trend of increasing T_C with reaction temperature is similar to that seen in the oxidation process of titanomagnetites [Readman and O'Reilly, 1972]. The theromagnetic curve of Sample S220 is presented in Figure 9b and the large difference between the heating and cooling curves.
nonstoichiometric Fe₃O₄, with an approximate composition of 59% magnetite and 41% maghemite. However, M particles to be
ucts heated to 220°C. Oxidation of inverse spinel structured Fe₃O₄ under low-temperature conditions is known to involve topotactic transformation where the original morphology is maintained throughout [Da Costa et al., 1995; Schmidbauer and Keller, 2006].

4.2. Oxidation Mechanism

Oxidation of inverse spinel structured Fe₃O₄ under low-temperature conditions is known to involve topotactic transformation where the original morphology is maintained throughout [Gallagher et al., 1968; Cornell and Schwertmann, 2003]. The reaction proceeds by outward migration of Fe²⁺ cations toward the surface of the crystal, thereby creating cation vacancies, and absorbed oxygen atoms at the surface oxidize the migrating cations to form a shell of γ-Fe₂O₃. In terms of diffusion pathways, when γ-Fe₂O₃ is reduced to Fe₃O₄, the newly formed Fe₂O₃ {111} planes are parallel to the original γ-Fe₂O₃ {006} planes, with the latter considered favorable planes for oxygen diffusion during thermal reduction [Almeida et al., 2012]. Hence, in the reverse process of oxidation, the Fe²⁺ cations are suggested to preferentially diffuse along the Fe₂O₃ {111} planes.

Table 3. Mössbauer Parameters of Sextets S₁ and S₂ of Figure 6 Determined for Samples S₁–S₂₂₀

<table>
<thead>
<tr>
<th>Sample</th>
<th>S₁</th>
<th>S₂</th>
<th>S₁</th>
<th>S₂</th>
<th>S₁</th>
<th>S₂</th>
<th>zSt₂/A</th>
<th>Magnetite (wt %)</th>
<th>F₀/Fₐ</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>47.9</td>
<td>44.7</td>
<td>0.28</td>
<td>0.65</td>
<td>−0.01</td>
<td>0.01</td>
<td>0.39</td>
<td>0.55</td>
<td>0.46</td>
</tr>
<tr>
<td>S₁₂₀</td>
<td>49.0</td>
<td>45.6</td>
<td>0.29</td>
<td>0.66</td>
<td>−0.01</td>
<td>0.01</td>
<td>0.42</td>
<td>0.63</td>
<td>0.46</td>
</tr>
<tr>
<td>S₁₄₀</td>
<td>49.3</td>
<td>45.7</td>
<td>0.30</td>
<td>0.67</td>
<td>−0.01</td>
<td>0.02</td>
<td>0.46</td>
<td>0.71</td>
<td>0.44</td>
</tr>
<tr>
<td>S₁₆₀</td>
<td>49.6</td>
<td>45.5</td>
<td>0.32</td>
<td>0.67</td>
<td>−0.01</td>
<td>0.05</td>
<td>0.52</td>
<td>0.79</td>
<td>0.41</td>
</tr>
<tr>
<td>S₁₈₀</td>
<td>49.5</td>
<td>44.3</td>
<td>0.32</td>
<td>0.65</td>
<td>0.00</td>
<td>0.06</td>
<td>0.51</td>
<td>0.79</td>
<td>0.39</td>
</tr>
<tr>
<td>S₂₀₀</td>
<td>49.8</td>
<td>47.5</td>
<td>0.32</td>
<td>0.41</td>
<td>0.00</td>
<td>0.06</td>
<td>0.51</td>
<td>0.33</td>
<td>−0.55</td>
</tr>
<tr>
<td>S₂₂₀</td>
<td>49.9</td>
<td>48.2</td>
<td>0.32</td>
<td>0.43</td>
<td>0.01</td>
<td>0.06</td>
<td>0.53</td>
<td>0.33</td>
<td>−1.9</td>
</tr>
</tbody>
</table>

*BF₅ = magnetic hyperfine field, IS = isomer shift with regard to metallic Fe; QS = quadrupole splitting and W = line width of the outermost lines of a sextet (FWHM). zSt₂/A = weighted average isomer shift of sextets S₁ and S₂. Magnetite (wt %) calculated using the model of Da Costa et al. [2014]; F₀/Fₐ = relative area ratio of sextet B to sextet A. F₀/Fₐ is calculated assuming [Fe³⁺/Fe²⁺] = [Fe⁵⁺/Fe⁴⁺]. The estimate for z was made by comparing F₀/Fₐ ratios to those in the literature [Ramdani et al., 1987; Schmidbauer and Keller, 2006].

4. Discussion

4.1. Overview

This study has followed the maghemization of Fe₂O₄ grains in the PSD size range as a function of reaction temperature and the associated effect on their magnetic properties. The XRD pattern of Sample S₁ is in good agreement of pure Fe₃O₄, which is reinforced by complementary SAED and characteristic O Ts K/Fe 2p 1s,2,3 edges in the associated EEL spectra. Further, TEM imaging showed the particles to be ~150 to ~250 nm in diameter and off-axis electron holography revealed their PSD nature. However, Mössbauer analysis of Sample S₁ exhibited sextets with hyperfine parameters more indicative of nonstoichiometric Fe₃O₄ with an approximate composition of 59% magnetite and 41% maghemite. Increasing the reaction temperature led to the development of additional peaks in the XRD patterns of Samples S₁₂₀–S₂₂₀, and Sample S₂₂₀ displayed an XRD pattern characteristic of γ-Fe₂O₃. Increasing the reaction temperature led to the development of additional peaks in the XRD patterns of Samples S₁₂₀–S₂₂₀, and Sample S₂₂₀ displayed a typical spectrum of γ-Fe₂O₃ [Da Costa et al., 1995; Schmidbauer and Keller, 2006].
with their relatively large lattice plane spacing of 4.79 Å providing a low energy diffusion pathway. For example, the HAADF image in Figure 3b shows the (111) planes to lie normal to the surface edge in the Fe₃O₄ grain and would provide an easy route for cation diffusion to the surface for oxidation. The fully oxidized inverse spinel structure of c-Fe₂O₃ can be written as Fe₃⁺\(Fe^{3+}_{3} \) \(Fe_{0.5}\) \(Fe^{3+}_{2.5} \) \(O^{2-}_{2} \), where the octahedral sites are enclosed by the brackets and \(\square \) denotes a lattice vacancy. The composition calculated quantitatively from the EEL spectra shows the surface of the Fe₃O₄ grain in Sample S140 (Spectrum C, Figure 3) to exhibit a slightly higher O content than toward its center. By implication, the observed lower surface Fe content provides evidence for the surface oxidation mechanism with the formation of core-shell Fe₃O₄/c-Fe₂O₃ structures with increasing reaction temperature. However, the change in stoichiometry during oxidation of significantly larger Fe₃O₄ grains is considered to proceed more uniformly.

Figure 7. (a) Magnetite content in Samples S1–S220 as a function of increasing reaction temperature. (b) Relationship between the oxidation parameter \(z \) and the unit cell lattice parameter \(a \).

Figure 8. Magnetic properties of Samples S1–S220 as a function of increasing reaction temperature. (a) Graph of \(B_c \) profiles along the \(B_u \) axis extracted from the FORC diagrams, with the maximum value of the profile marked; and (b) a Day plot of the reaction products. (c, d) Normalized FORC diagrams of Samples (c) S1 and (d) S220, acquired at room temperature.
4.3. Effect of Oxidation on Magnetic Properties

In Fe₃O₄, Fe²⁺ cations occupies the octahedral B-sites, whilst Fe³⁺ ions occupies both tetrahedral A and octahedral B-sites, and hence, the magnetic moments of the Fe³⁺ ions are mutually compensated and the net moment is attributed to the Fe²⁺ cations [Mathew and Juang, 2007]. In contrast, the ferrimagnetism of γ-Fe₂O₃ is the result of an average excess per formula weight Fe₈/₃O₄ of 2/₃ of an Fe³⁺ ion on the B sublattice [Dunlop and Özdemir, 2001]. The \(T_C \) values for Samples S1 and S220 were indicative of Fe₃O₄ and γ-Fe₂O₃, respectively, whilst their FORC diagrams display PSD/SD type behavior with distinct peaks centered at \(\sim 22 \) and \(\sim 18 \) mT, respectively. Construction of magnetic induction maps from the off-axis electron holograms complemented the FORC data by visualizing the PSD domain state nature of both the Fe₃O₄ and γ-Fe₂O₃ grains. Interestingly, during the oxidation process from Fe₃O₄ to γ-Fe₂O₃, the Bc and Bcr values generally increased with reaction temperature up to 180°C, with subsequent decrease thereafter. Ge et al. [2014] reported a similar trend during oxidation of Fe₃O₄ particles in the PSD size range, which they interpreted using a micromagnetic numerical model: for PSD grains near the critical SD grain size boundary, as the Fe²⁺ cations diffuse toward the surface of the particle and the γ-Fe₂O₃ shell thickness increases through oxidation, the diameter of the Fe₃O₄ core decreases as a consequence. As the Fe₃O₄ core becomes smaller, the overall magnetic strength of the grain decreases due to the lower \(M_s \) of the γ-Fe₂O₃ skin, whilst exchange coupling of the Fe₃O₄ core to the γ-Fe₂O₃ skin maintains the high magnetocrystalline anisotropy, and at a point, the minimum energy domain structure is more SD-like. As oxidation proceeds the small Fe₃O₄ core shrinks sufficiently so that it is unable to provide a significant influence on the Bc, which collapses markedly as the grain reverts to a vortex structure. For larger PSD grains, the grains remain in a vortex state throughout the oxidation process, but vorticity of the magnetic domain state reduces as the γ-Fe₂O₃ skin grows. The magnetically harder and slightly more uniform domain structures result in a trend of increasing Bc until the Fe₃O₄ core almost disappears when both parameters decrease significantly, which is consistent with the experimental data and supports the proposed mechanism of maghemization proceeding through the formation of core-shell Fe₂O₃/γ-Fe₂O₃ structures. Due to the rather subtle changes observed in the Bc values and FORC diagrams, the transition from vortex state to vortex with reduced vorticity is considered to be the dominant mechanism in this study. It appears unlikely given the small increases

Table 4. Summary of Room-Temperature Hysteresis Parameters and Curie Temperatures of Samples S1–S220

<table>
<thead>
<tr>
<th>Sample</th>
<th>(B_c) (mT)</th>
<th>(B_{cr}) (mT)</th>
<th>(B_{cr}/B_c)</th>
<th>(M_s)</th>
<th>(M_{s}/M_r)</th>
<th>(T_C) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>12.37</td>
<td>25.04</td>
<td>2.02</td>
<td>0.47</td>
<td>0.18</td>
<td>583</td>
</tr>
<tr>
<td>S120</td>
<td>12.05</td>
<td>25.26</td>
<td>2.10</td>
<td>0.34</td>
<td>0.18</td>
<td>583</td>
</tr>
<tr>
<td>S140</td>
<td>12.35</td>
<td>24.77</td>
<td>2.01</td>
<td>0.26</td>
<td>0.19</td>
<td>589</td>
</tr>
<tr>
<td>S160</td>
<td>12.96</td>
<td>27.87</td>
<td>2.15</td>
<td>0.25</td>
<td>0.18</td>
<td>589</td>
</tr>
<tr>
<td>S180</td>
<td>13.33</td>
<td>28.22</td>
<td>2.12</td>
<td>0.14</td>
<td>0.19</td>
<td>608</td>
</tr>
<tr>
<td>S200</td>
<td>12.51</td>
<td>25.53</td>
<td>2.04</td>
<td>0.34</td>
<td>0.19</td>
<td>629</td>
</tr>
<tr>
<td>S220</td>
<td>12.21</td>
<td>22.51</td>
<td>1.84</td>
<td>0.23</td>
<td>0.21</td>
<td>649</td>
</tr>
</tbody>
</table>

Figure 9. (a) Curie temperatures of Samples S1–S220 as a function of oxidation parameter z. (b) Thermomagnetic curve of Sample S220. Heating was performed in flowing helium in a field of 300 mT.
in coercivity that magnetoeelastic effects due to induced stress contribute significantly to the resulting magnetic properties.

4.4. Implications for Paleomagnetic Studies

From the above observations, the reliability of the magnetic remanence of maghemitized rocks is called into question; the process of oxidation will lead to the acquisition of a new chemical remanent magnetization (CRM). Due to the shell growth mechanism, the original Fe₃O₄ phase in the core will affect the magnetic alignment of the γ-Fe₂O₃ shell [Ge et al., 2014]. It is likely that on average for a distribution of the particles the original magnetization direction will be retained. However, obtaining a paleointensity estimate may not be accurate for two reasons: (1) the core/shell CRM acquisition model may not always couple and the CRM of individual particles may not be aligned with the original remanence and (2) whilst it might be theoretically possible to recover the paleointensity informan from a γ-Fe₂O₃ sample, γ-Fe₂O₃ is generally unstable to heating, as evidenced by the thermomagnetic curve of Sample S220, and samples dominated by this phase are, therefore, likely to fail Thellier-type or other heating paleointensity protocols. It is also recognized that potential differences exist between these experimental results, which involve oxygen addition, compared to that undergone in mid-ocean ridges that may favor a Fe-removal mechanism for oxidation.

5. Conclusions

This study has investigated the maghemization of Fe₃O₄ grains in the PSD size range and the effect of this oxidation process on their magnetic properties. Complementary methods of XRD and Mossbauer spectroscopy were used to study the transformation of Fe₃O₄ into γ-Fe₂O₃. The coercivity of γ-Fe₂O₃ nanorods under H₂ atmosphere, as determined by EELS analysis of the O 1s K/Fe 2p L₂,3 edges acquired from the precursor Fe₃O₄ grains and fully oxidized γ-Fe₂O₃ grains. The formation of a core-shell Fe₂O₃/γ-Fe₂O₃ structure was confirmed by electron@SpringBootTest holography and localized EELS analysis revealed evidence to suggest the surface to be more oxidized, supporting the formation of a core-shell Fe₂O₃/γ-Fe₂O₃ structure. Off-axis electron holography allowed for construction of magnetic induction maps of individual Fe₂O₃ and γ-Fe₂O₃ grains, revealing their PSD (vortex) nature in both cases, which is supported by corresponding first-order reversal curves characteristic of PSD states. Thermomagnetic curves showed an increase of Tc with reaction temperature that is consistent with maghemization process. The coercivity of the magnetite grains was shown to increase with reaction temperature up to 180°C, but decrease thereafter. This magnetic behavior is attributed to exchange coupling between a γ-Fe₂O₃ shell with the Fe₂O₃ core resulting in an energy minimum of SD state or a vortex state with reduced vorticity, with the latter considered the dominant mechanism in this study. Once fully oxidized to γ-Fe₂O₃, the domain states revert back to vortices with slightly reduced coercivity. It is suggested that heavily maghemized samples may not retain meaningful paleomagnetic signals.

Acknowledgments

The authors would like to thank the Natural Environment Research Council for funding (NERC grant NE/H00534V/1). Thanks also go to the Center for Electron Nanoscopy at the Technical University of Denmark for use of their microscopy facilities. The data for this paper are available at NERC-designated data center for the Earth sciences, the National Geoscience Data Centre.

References

van Aken, P. A., and S. Lauterbach (2003), Strong magnetic linear dichroism in Fe L_{2,3} and O K electron energy-loss near-edge spectra of antiferromagnetic hematite \(\gamma\)-Fe_{2}O_{3}, Phys. Chem. Miner., 30, 469.