Information Flow Through Stages of Complex Engineering Design Projects: A Dynamic Network Analysis Approach

Parraguez, Pedro ; Eppinger, Steven D.; Maier, Anja

Published in:
IEEE Transactions on Engineering Management

Link to article, DOI:
10.1109/TEM.2015.2469680

Publication date:
2015

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Information Flow Through Stages of Complex Engineering Design Projects: A Dynamic Network Analysis Approach

Parraguez, Pedro; Eppinger, Steven D.; Maier, Anja

Published in:
IEEE Transactions on Engineering Management

DOI:
10.1109/TEM.2015.2469680

Publication date:
2015

Link to publication

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
TITLE: Information Flow through Stages of Complex Engineering Design Projects: A Dynamic Network Analysis Approach

ABSTRACT: The pattern of information flow through the network of interdependent design activities is thought to be an important determinant of engineering design process results. A previously unexplored aspect of such patterns relates to the temporal dynamics of information transfer between activities as those activities are implemented through the network of people executing the project. To address this gap, we develop a dynamic modelling method that integrates both the network of people and the network of activities in the project. We then employ a large dataset collected from an industrial setting, consisting of project-related e-mails and activity records from the design and development of a renewable energy plant over the course of more than three years. Using network metrics for centrality and clustering, we make three important contributions: 1. We demonstrate a novel method for analysing information flows between activities in complex engineering design projects. 2. We show how the network of information flows in a large-scale engineering project evolved over time and how network analysis yields several managerial insights. 3. We provide a useful new representation of the engineering design process and thus support theory-building towards the evolution of information flows through systems engineering stages. Implications include guidance on how to analyse and predict information flows as well as better planning of information flows in engineering design projects according to their individual stage and activity characteristics.
I. INTRODUCTION

Complex engineering design projects comprise interdependent activities implemented by interconnected people. Such projects can be described as an intertwined network of people exchanging and transforming information, the organisation architecture, and as a network of information interdependent activities, the process architecture. The connection between these two architectures is created when design engineers and other project participants interact to exchange and transform information between activities [1]–[4]. As a result of these interactions, information can flow between interdependent design activities in the form of design inputs and outputs [5].

From a research and managerial perspective, quantifying, analysing and understanding the evolving information flows between activities in the design process is an essential tool to provide support to complex engineering design projects [2], [6]. The intended or expected evolution of information flows between activities (given activities’ information dependencies) has been modelled and analysed through activity network process models [7]. In turn, the overall evolution of the design process has been framed and guided through stage-based models of the design process [8], [9]. The combination of these two approaches is particularly relevant in the context of process planning, supporting key decisions related to process structure, resource allocation and budgeting [7]. However, in order to quantify and analyse how information actually flows between activities, and support process execution and control, we require a model that simultaneously integrates the dynamic architecture of the process as well as the dynamic architecture of the organisation that implements the process. This integration allows connecting the actual sequence of activities in the process with those who, through their work, exchange and transform information within and between activities [4].
Nonetheless, previous studies of the design process have not provided and empirically tested a model to analyse the evolution of information flow between activities in a way that clearly distinguishes actual flows from information dependencies or intended information flows; nor have these studies analysed evolving information flows at each systems engineering stage. As a consequence, it has not been possible to compare actual information flows against expected information flows at each stage. This is not only a shortcoming in our design process knowledge, but also has hindered possibilities for monitoring overall project progress and improving process execution and control.

Against this background, this paper poses two main research questions:

1) How can we model and analyse actual information flows between activities through stages of complex engineering design projects? and 2) What are the implications, for theory and practice, of a model to analyse actual information flows between activities?

To answer these research questions the rest of the paper is structured as follows: Section II reviews and identifies gaps in key literature on information flow models. Section III develops a dynamic model to quantify and analyse actual information flows between activities. Section IV develops a baseline from which to compare and interpret empirical results derived from the application of our model. Section V introduces our case study. Section VI provides empirical results of the application of our model. Section VII discusses the results, limitations, and answers the above research questions. Finally, section VIII concludes with a synthesis of this paper’s contribution.

II. LITERATURE BACKGROUND

In the context of the design process of complex systems, information flows can be studied from three main perspectives: (A) Organisational, with design as a social process of information transformation and a focus on communication between people. (B) Process
oriented, analysing design in terms of information dependent activities and a set of project stages. (C) At the intersection of organisation and process, explicitly considering the information flow between activities as a function of information exchanges between people. In this section we cover each of these three perspectives, identify current literature gaps, and elicit the requirements for a dynamic model of actual information flows between activities.

A) Organisational perspectives on information flow in engineering design: The design of complex products and systems has been considered a social process of information transformation [10]–[12]. As such, a systemic understanding of communication that considers information, interactions, and the specific situation during the development process becomes essential for design process improvements [6], [13].

Information exchanges and information flows are used to model communication patterns between participants of engineering design projects. An information exchange can be understood as a simplified communication episode, where information is generated and transmitted between parties of the design process as a discrete event in time. An information flow is the combination of information exchanges over a period of time and involves a sequence of information exchanges about usually interdependent design activities [14, Ch. 1], [15].

Although information flows are inherently dynamic in nature, for simplicity, most studies analyse them at an aggregate level e.g. [16]–[19]. Only more recently, with the advent of richer data sources and powerful network analysis techniques, have detailed dynamics been studied, e.g. [20]–[23].

This organisational perspective of information flows provides valuable insights for the analysis of organisational issues, such as communication patterns between individuals or departments, e.g. [16], [24]. However, this perspective of the design process of complex
engineering projects is incomplete, as it does not explicitly integrate activities and project progress.

B) Process-driven perspectives on information flow in engineering design: In the process domain we find engineering design activities connected by their information dependencies and/or administrative controls. Following Sim & Duffy’s ontology of generic design activities [25], we use the term activity to refer to the actual realisation of a particular design task. Activities then involve actions executed by a person or group to transform a set of information inputs into a set of information outputs. In the context of a design activity, information has the purpose of defining the design object, evaluating design options, and/or coordinating the design process [25].

Models describing the architecture of the process domain that have been used to study issues related to information flows between activities include, to name a few, the process-type Design Structure Matrix (DSM), workflow diagrams, IDEF, CPM/PERT and Petri nets (for a review of activity network-based process models see [7]). All these models consider a network of activities frequently connected by information-based relationships between them.

Even though process models are often used to describe and analyse actual information flows between activities, the relationship they use to connect activities is not an actual information flow. Instead, the relationship between activities tends to fall into two types. One, relationships based on known technical and managerial needs that are used to define a dependency. And two, relationships based on planned information flows, typically in the form of top-down plans or perceptions acquired from a few company experts. These two types of relationships restrict the kind of questions that can be posed to elicit the process architecture to questions such as: “What is the information dependency (if any) between activities A and B?” and “What is expected/should be the information flow between activities A and B?”. However, what is really required to model actual information flows between
activities is to complement plans and known technical dependencies with the architecture of the multiple information exchanges between project participants in the context of the activities in which they participate.

This distinction between a process model that is built upon planned or expected information flows, in contrast to a model of actual information flows, is important when interpreting empirical results. For example, the stated aim of Collins et al. [26] and Braha & Bar-Yam [27] is to describe and analyse the dynamics of information flows between activities; nevertheless, the information they acquire and model only describes an evolving network of information dependencies. As a consequence, their results describe planned or expected information flows, not actual information flows.

Activity categories: In terms of the functions that activities perform, and building on the approach by Sosa et al. [28] to identify and name modular and integrative subsystems, we can identify two broad activity categories: The first category includes activities related to the engineering design of specific components, modules, or subsystems under development; these we call *modular subsystem activities*. The second category corresponds to activities with the objective of integrating two or more components, modules, or subsystems; these we call *integrative subsystem activities*. A third category, not included in the original work of Sosa [28] but considered important by Sim & Duffy [25], corresponds to activities that support, manage, and coordinate design work; for consistency we call these *integrative work activities*. These three categories allow classifying activities based on their overall function and with this the means for aggregated analysis of information flows of each design stage.

Design process stages: Staged-based models of the design process reflect the transformation over time of a set of requirements into a detailed set of instructions to implement the design object [5], [12]. As the design process unfolds throughout its stages, information flows between activities also evolve. This evolution through different stages can be traced to
temporal and co-dependent aspects such as the progression of the design object [5], the maturity of the design process [29], and the changing interaction patterns between the people participating in the activities [4].

Systematic models of the engineering design process implicitly or explicitly consider a logical sequence of stages and a set of activities within each stage [30, p. 35]. To guide this paper’s discussion, we focus on the generic product development (PD) stages described in Ulrich and Eppinger [5] in conjunction with the system development perspective found in INCOSE’s systems engineering V model (SE-V) [31]. This combination has been selected because these models provide widely accepted generic stage descriptions for new product development and systems engineering processes. In addition, there are multiple commonalities between the stages of these models and the ones found in other popular engineering design process models [32], which enables generalisations beyond these particular models.

Figure 1 offers an overview that serves as a reference point for the characterisation of each stage. Our emphasis is on the stages spanning conceptual design to system integration, as these are the limits of what is usually considered the predominant focus of engineering design [14, p. 5]. Consequently, strategic planning and implementation are not explicitly covered in our analysis and discussion.

Combining the descriptions for the PD stages [5] and the SE-V model [31] each stage can be summarised from the literature in terms of its level of decomposition or integration, the level of abstraction or maturity of the design, process modularity, and the key activity categories that are expected to dominate the stage: **The conceptual design stage** is characterised by a low level of hierarchical decomposition, high level of abstraction, and is dominated by integrative work activities. Low process modularity and a relatively low number of activities are also expected.
The system-level design stage is characterised by low to medium level of hierarchical decomposition, medium level of abstraction, dominated by a combination of integrative work activities and modular subsystem design activities. Process modularity slowly increases and the number of activities are also expected to increase.

The detailed design stage is characterised by the highest level of hierarchical decomposition, the lowest level of abstraction, and is dominated by modular subsystem design activities and integrative subsystem design activities. Process modularity peaks, given the higher specialisation of the stage, and activities reach the maximum number.

The system integration stage is characterised by the highest level of integration, highest level of design maturity, and is dominated by integrative work design activities and integrative subsystem design activities. The overall process modularity and the number of activities are expected to decrease as the focus shifts from subsystems to the overall system under development.

Fig 1. Stages of the engineering design process used in the context of this study. Adapted from PD [5] and SE-V [31] process models

C) The intersection between process and organisation perspectives on information flows: In order to study information flows between activities, and recognising the need to
take the organisation architecture into account, previous studies have developed static or dynamic models of the design process combining elements from the process and the organisation domains. In combining these domains, various approaches have been followed according to the temporality of the analysis.

Static models have provided a temporally aggregated view of the information flows between activities through one or a few snapshots. These models have used either single-domain, matrix-based approaches, where each activity is associated with one organisational unit, for example 2D DSMs [33], [34], multi-domain matrix-based approaches [35], [36], or bi-modal network-based approaches [4]. Unfortunately, the static nature of these models does not allow calculating information flow metrics for each period of time nor does it allow contrasting those measures with expected information flow patterns at each design process stage. Dynamic models that simultaneously consider the evolution of process and organisation architectures, and therefore allow describing the actual evolution of information flow between activities, were not found.

Requirements and current gaps for a dynamic model of actual information flows between activities: Based on the above literature background, we can identify a set of key requirements to dynamically model actual information flows between activities through the design process stages:

- People and activities: The organisation and process architecture, as well as their intersection, need to be simultaneously considered so that all paths for information exchanges between activities are included.

- Dynamics: To capture the dynamic evolution of information flows through stages of the design process, both the organisation and process architecture need to be modelled as a dynamic network and quantitatively measured.
• Comparison base: To interpret the results of the model a comparison base is required. The comparison can be based on generic systems engineering stages, stated information dependencies and/or planned information flows (as long as they can be mapped dynamically).

Table 1 compares these requirements against current approaches to examine the suitability of each approach for modelling and analysing the evolution of actual information flows.

Table 1: Comparison of elicited requirements against reviewed models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Examples</th>
<th>People and Activities</th>
<th>Dynamics</th>
<th>Comparison Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation Domain - Static</td>
<td>(Batallas & Yassine, 2006; Hossain, 2009; Kratzer, Gemuenden, & Lettl, 2011; Sonnenwald, 1996)</td>
<td>Only people</td>
<td>No</td>
<td>Can be compared against formal org. architecture or in terms of cross-domain mirroring</td>
</tr>
<tr>
<td>Organisation Domain - Dynamic</td>
<td>(Gopsill et al., 2014; Hossain, Mursheed, & Uddin, 2013; Kidane & Gloor, 2007)</td>
<td>Only people</td>
<td>Yes</td>
<td>Does not provide a direct comparison base or benchmark</td>
</tr>
<tr>
<td>Process Domain</td>
<td>(Braha & Bar-Yam, 2007; Browning, 2002; Collins, Bradley, & Yassine, 2010; Collins, Yassine, & Borgatti, 2009; Smith & Eppinger, 1997)</td>
<td>Only activities</td>
<td>Yes. In the form of a sequence of activities</td>
<td>Can be compared in terms of cross-domain mirroring</td>
</tr>
<tr>
<td>Intersection Process and Organisation - Static</td>
<td>(Eppinger, 2001; Morelli, Eppinger, & Gulati, 1995; Sosa et al. 2004); (Maurer, 2007; Yassine, Whitney, Daleiden, & Lavine, 2003); (Durugbo, Hutabarat, Tiwari, & Alcock, 2011)</td>
<td>People and activities with different degrees of flexibility in the mapping</td>
<td>No</td>
<td>Can be compared against information dependencies in the process domain</td>
</tr>
<tr>
<td>Intersection Process and Organisation - Dynamic</td>
<td>The focus of this paper</td>
<td>People and activities</td>
<td>Yes</td>
<td>Can be compared against stages, information dependencies and planned information flows</td>
</tr>
</tbody>
</table>

Given the three previously mentioned requirements and the literature gap shown in Table 1, in this paper we focus on actual and evolving information flows at the intersection of process and organisation architectures.

III. A DYNAMIC AND CROSS-DOMAIN NETWORK APPROACH FOR QUANTIFYING INFORMATION FLOWS IN ENGINEERING DESIGN

Building on the characteristics of information flows in engineering design, the elicited requirements, and the literature background, in this section we introduce our dynamic
network model of information flow between activities. In addition, here we also provide a brief introduction to key network analysis concepts, in particular centrality and clustering, which will be used as tools to quantify the evolution of information flows.

Network metrics: A common thread of the organisational and process models introduced in section II is the explicit or implicit use of network analysis. The most common approaches consider matrix-based or graph-based network analysis to model information flow or information dependencies in the form of an information network. In order to understand these information networks it is helpful to frame them in the wider context of network analysis studies of complex engineering design projects.

An information network is taken to be a system representation of the information transformation process, where the elements (nodes) are connected by information exchanges (edges). Such elements can be combined into a multimodal network (where different types of elements co-exist) or as a one-mode network (where only one type of element is represented). Each node can be described using network measures that quantify their direct and/or indirect connections. Likewise, the network as a whole can also be described based on the structure of its connections (in our case information exchanges). Table 2 offers a description of selected network measures that allow quantifying two important aspects of information networks: centrality and clustering.
Table 2. Details of selected network measures and their relevance for information networks.

<table>
<thead>
<tr>
<th>Network Concept</th>
<th>Description of Network Measure</th>
<th>Meaning for Information Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eigenvector network centralisation index [37], [38, p. 177]</td>
<td>As with other network centralisation indices, this index measures how central the most central node in the network is in relation to how central all the other nodes in the network are [38, p. 177] (based, in this case, on their eigenvector centralities). In networks where only one node has a higher eigenvector centrality and all the rest have the same centrality this measure reaches its maximum value (100% centralisation, see graph ii below). In networks where all nodes have the same centrality this measure reaches its minimum value (0% centralisation, see graphs iii and iv).</td>
<td>Nodes with high eigenvector centrality are more likely to act as intermediaries on information exchanges. Therefore, they can reach a higher degree of influence on those exchanges (see node A in graph ii). The inverse is true for the case of nodes with low information centrality (see node G in graph v).</td>
</tr>
<tr>
<td>Node level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eigenvector centrality [37]</td>
<td>Measures the extent to which the neighbours of a given node are a fully connected graph. A node with a fully connected neighbourhood has a clustering coefficient of one. The opposite gives a clustering coefficient of zero [40]. The weighted clustering coefficient is a variant of this, which considers the relative weight of the edges to determine the extent of connectedness of the node’s neighbourhood [39].</td>
<td>High clustering coefficient is a sign that the focal node is embedded in a cohesive group where its members are tightly connected via information exchanges (see node B in graph v). In turn, a node with low clustering coefficient is embedded in a group with members who only sparsely exchange information between themselves.</td>
</tr>
<tr>
<td>Clustering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted overall graph clustering coefficient [40], [41, Ch. 8]</td>
<td>The overall clustering coefficient is a measure of the extent that the network forms well-connected subgroups, in other words includes a measure of modularity. The measure is based on the proportion of triadic closure and the maximum possible given the network topology. The higher this measure, the higher the overall clustering [40]. The weighted version considers the strength of all edges between nodes in the network [41, Ch. 8].</td>
<td>A high overall clustering coefficient indicates that the network as a whole has tightly connected groups and therefore is a sign of the existence of cohesive information exchange groups (see graphs iv and v). In turn, the opposite indicates a network only sparsely connected, without clearly defined groups, which is an indication of low modularity in the information network (see graphs iii and v).</td>
</tr>
</tbody>
</table>

As described in Table 2, when metrics of centrality and clustering are applied to an information network, they reveal fundamental information flow patterns and network properties. Although at the node and network level there are a number of other network metrics available to quantify centrality and clustering, not all measures are equally suitable to quantify weighted information networks. For a review see Bonacich [37] and Borgatti [42].

![Centralisation index = 51.76% Network Clustering = 0](image1)

![Centralisation index = 100% Network Clustering = 0](image2)

![Centralisation index = 0% Network Clustering = 0](image3)

![Centralisation index = 0% Network Clustering = 0](image4)

![Centralisation index = 37.37% Network Clustering = 0.48](image5)

\(e = \text{eigenvector centrality} \quad \text{cc} = \text{clustering coefficient} \)
Node-level and network-level centrality measures applied to information networks quantify the influence that a given node can have on information flows in a network and the degree to which those flows are centralised in a few nodes. Borgatti [42] shows that given the properties of inherent divisibility, parallel duplication, and influence transitivity found in networks constituted of information flows “the eigenvector centrality measure is ideally suited for influence type processes” [42, p. 62], in particular those related to information-based influence.

Node-level and network-level clustering metrics applied to information networks determine the extent of triadic closure of a given node or the entire network, and therefore reveal the extent to which information flows are associated to tight network clusters [40]. As a result, clustering provides an indication about the modularity of the information network. Unlike centrality measures, for which there are less consensus and more options, the clustering coefficient of Watts & Strogatz [40] and its weighted version [39] (at the node and network level) are widely used, and while generic, are well-suited for the analysis of information networks, e.g. [4].

If either centrality or clustering metrics are utilised in isolation, it is hard to evaluate the overall network topology in terms of aspects such as modularity, which at least requires a combination of inputs on centrality and clustering [43]. For example, graph iv in Table 2 has a maximum clustering coefficient, however that network is only formed by one big cohesive cluster, therefore it is not possible to speak about modularity, as that would require the underlying system to be at least semi-decomposable into two or more modular subsystems [43]. As a result, the combination of network-level measures for centrality and clustering provide a more balanced view.

Proposed approach: Our approach differentiates from prior research in its explicit integration of the interconnectedness between domains and the temporal dynamics of the
engineering design process. The emphasis is on the *process architecture as implemented through the organisation architecture*. This approach allows describing and analysing the actual temporal dynamics of the design process, in contrast to the traditional form of modelling the process architecture based on reported dependencies.

In order to obtain the process architecture as implemented through the organisation architecture, our research approach models engineering design as a social process of information transformation [10]–[12], where information flows between activities are connected and progressively transformed via people participating in the process [4].

Figure 2 shows how the *actual* process architecture is derived from the combination of an activity network (process architecture), a communication network (organisation architecture) and an activity-people mapping (cross-domain architecture). More specifically, our model is built using: a) A work breakdown structure to identify the activities and their logical work packages, b) an organisation-type DSM to identify information-driven interactions between the members of the project (in our case synonymous with information exchanges) [2], and c) a Domain Mapping Matrix (DMM) [36] to identify the participation of the members of the project in design activities. All relations in the matrices are directly acquired (no indirect dependency is computed) and the people-activities relations of the DMM are combined with the people-people information exchanges to produce all information paths shown by the dashed lines in Figure 2. The dashed lines in our suggested model represent the actual information flowing through activities and people at any given point of time.
Figure 2. Illustration of the two information flow paths in the model: between people and between people and activities.

A distinctive characteristic of our model is that to calculate the evolution of the network metrics for centrality and clustering it uses one organisation DSM and one DMM for each period of time, which, depending on the resolution of the available data and the objective, could be as frequent as daily or weekly. For each of these periods of time, the model thus combines the corresponding organisation DSM and the DMM to produce a bi-modal network that contains two types of paths for information to be exchanged between activities (shown in Figure 2). The first path corresponds to the direct flow of information between activities via a person who participates in the same period in two or more activities. The second path for information to flow between activities occurs when two project members participating in different activities exchange information during the same period. The weight of these paths (network edges) can be assigned based on qualitative measures of intensity, actual number of information exchanges between people, number of activity records per person over time, or a combination of the above.

In order to quantify and characterise the changing patterns of information flow at the activity and project level, we calculate, for each period of time (e.g. each stage), centrality and clustering metrics at the node and whole-network levels. Modelling centrality and clustering
is important as it reveals when and which activities intermediate or influence information in the project and the underlying topology of the network where this happens. This, in turn shapes the temporal dynamics of the design process and affects the development of critical interfaces between subsystems [24].

We define the information centrality (or influence) of an activity by its weighted degree of intermediation on information exchanges. This information centrality can be determined by the centrality of the activity within a network of information flows and quantified using the previously introduced network metric of eigenvector centrality [37]. In addition, we define information centralisation (centrality at the network level) as the overall weighted distribution of information centrality in the whole project. We quantify information centralisation using a network metric based directly on eigenvector centrality known as eigenvector network centralisation index [37], [38, p. 177].

We define information clustering of an activity by the weighted degree of triadic closure of the information exchanges between the people performing the activity. Information clustering can be quantified using the previously introduced network metric of weighted clustering coefficient [39]. In addition, we define overall information clustering (clustering at the network level) as a measure of the tendency of the network to form well-connected subgroups of people around activities. We quantify overall information clustering using a network metric based on the clustering coefficient, known as the weighted overall graph clustering coefficient [40]. The weighted version of this last metric “gives weight to the neighbourhood densities proportional to their size; that is, actors with larger neighbourhoods get more weight in computing the average density” [41, Ch. 8]. The formulas for these four network metrics are available in appendix A.

Although to obtain the actual process architecture we could have taken a more traditional process DSM approach, asking directly how activities are implemented based on expert
knowledge, as in [2], [44], the inter-temporal nature of our analysis would have made this task overly difficult for the respondents. The problem originates in the multiple ways in which activities can be implemented and connected to other activities through people. In contrast, instead of directly gathering this dynamic network of task interactions from experts, our approach first acquires the mapping of people to activities over time, then identifies the dynamic interactions between people, and finally composes a unified network structure utilising this bottom-up perspective. Such data gathering strategy also has the advantage that it can be automated via the extraction of digital traces produced throughout the design process.

To facilitate analysis and interpretation, the process architecture can be analysed by aggregating low-level activities into larger activity groups (work packages) and activity categories based on the common work they perform towards developing a particular subsystem or subprocess.

IV. THE RELATIONSHIP BETWEEN DESIGN PROCESS STAGES AND THE DYNAMIC NETWORK STRUCTURE OF INFORMATION FLOWS

The model presented in section III provides a way to empirically quantify the changing patterns of information centrality and clustering between activities, as well as of overall information centralisation and overall information clustering in engineering design projects. However, to interpret the empirical results obtained through the application of the model we need a base against which to compare the obtained information centrality and clustering patterns.

One option is to compare the empirical results against a previous and closely related successful project to which the same quantification of information flows was applied. Although this option allows for a direct benchmark, it would not allow for a theoretical
understanding of information flow patterns. In addition, data of closely related and successful projects is often unavailable in practice. An alternative option is to build a comparison based on an examination of qualitative descriptions found in generic models of systems engineering stages. As long as the engineering design project under study follows a sequence of systems engineering stages it is possible to benchmark against information centrality and clustering patterns inferred from the descriptions of each generic engineering design stage.

To enable the analysis and comparison of empirical results produced by the application of the proposed model against systems engineering stage models, we need to translate the qualitative systems engineering stage descriptions and characteristics (section II) into expected information flow patterns by stage. That is to say, we need, a theory of how information is expected to flow between activities in different engineering systems stages. Given the description of the design process stages introduced in section II, we postulate the following information centrality and clustering patterns per stage:

Conceptual design and system-level design stages: While the conceptual and system-level design stages have different purposes, from the point of view of expected information flow patterns they share similar features. Both stages are characterised by a high level of abstraction and system-level focus, and we expect these stages to be dominated by integrative work activities that possess a relatively high level of information centrality and low levels of clustering. Such a topology resembles a star-like network structure, with integrative work activities at the centre of the network (see Table 3). At the whole network level this translates into a high network centralisation index and low overall graph clustering.

Detailed design stage: As at this stage the maximum level of decomposition is reached, and the focus shifts towards individual subsystems, we expect modular subsystem activities to dominate the network topology of this stage. This means that modular subsystem activities should exhibit, relative to the other two activity categories, the highest centrality. However, at
the network level, this stage should exhibit a relatively low centralisation, consistent with the distributed nature of work in parallel subsystems. Likewise, considering the high level of decomposition required, clustering should be high, reflecting the expected process modularity associated with the required system decomposition into subsystems. At this stage, given the increased level of technical specialisation, the coordination between subsystems is expected to shift from integrative work activities to integrative subsystem activities. Such a shift should increase the centrality of integrative subsystem activities and decrease the centrality of integrative work activities. At the whole network level this translates into a low network centralisation index and high overall graph clustering.

System integration stage: Considering the shift of focus in this stage from the detailed design of subsystems to their integration, we expect a reversal of some of the network patterns reached at the detailed design stage. In particular, and consistent with the need for cross-subsystem coordination, integrative work activities should regain centrality and the overall information centralisation of the network should also increase. As the emphasis shifts from modularity to integration, overall graph clustering should decrease and centralisation should increase. Given the higher degree of technical maturity and system complexity of the design reached at this stage, while overall clustering is expected to decline, is not expected to go below levels found during the conceptual and system-level design stages.

Table 3 summarises the expected patterns for each of the previously covered stages in terms of information centrality and clustering, providing a base against which to compare the empirical results obtained from our case study (presented in the following section).
Table 3. Summary and comparison of expected information patterns for each stage.

<table>
<thead>
<tr>
<th>Expected Information Pattern</th>
<th>Conceptual Design and System-Level Design</th>
<th>Detailed Design</th>
<th>System Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall topology of the information network</td>
<td>![Diagram](Expected I information Pattern)</td>
<td>![Diagram](Expected I information Pattern)</td>
<td>![Diagram](Expected I information Pattern)</td>
</tr>
<tr>
<td>Centrality</td>
<td>Integrative work activities, such as project management, tend to centralise information flows.</td>
<td>Integrative and modular subsystem activities to gain centrality while integrative work activities decline.</td>
<td>Integrative work and integrative subsystem activities increase their centrality to integrate results from the work of different subsystems.</td>
</tr>
<tr>
<td>Network-level centralisation</td>
<td>High overall information centralisation in order to coordinate and prioritise system-level inputs.</td>
<td>With an increase in the number of activities reaching higher levels of centrality, overall network level centralisation decreases.</td>
<td>Overall centralisation increases to match the demand for coordinated system-level integration.</td>
</tr>
<tr>
<td>Activity-level clustering</td>
<td>Low levels of activity clustering are expected as independent work in individual subsystems is minimal or non-existent.</td>
<td>High network clustering across activity categories is expected, in particular modular subsystem activities. This reflects a move from global to local coordination.</td>
<td>The high clustering around modular subsystem activities found in the previous stage is expected to decrease due to integration needs.</td>
</tr>
<tr>
<td>Network-level clustering</td>
<td>Low level of overall clustering as distributed work in individual subsystems has yet to start.</td>
<td>A high level of overall clustering is expected as the work becomes more distributed in subsystems</td>
<td>Overall network clustering is expected to decrease as the previously distributed work in subsystems is integrated.</td>
</tr>
</tbody>
</table>

V. CASE STUDY: THE DESIGN OF A BIOMASS POWER PLANT

In order to test our model, we used a large engineering design project as a case study. The project consisted of the complete engineering design work of a biomass power plant for electrical energy generation, developed in the period between September 2009 and May 2013. Access to the project data was gained through the company in charge of the engineering design of the plant. The same company coordinated work with the construction contractor and the component manufacturers. Key contact points were the VP of Operations, the VP of Engineering, the project manager, and the quality assurance team.

Organisation domain data: Data to map the organisation domain were acquired through an analysis of 20,127 internal email information exchanges between 162 members of the engineering design project spanning 15 functional areas. This dataset represents the totality of...
project-related email communication during the period under study. Email metadata about sender and recipient as well as time and date were used to model the actual organisation architecture as a dynamic information exchange network. Due to archival requirements from clients and regulatory agencies, all emails in this dataset are related exclusively to the design process of the biomass power plant, therefore they are a good representation of relevant project-related information exchanges.

We assessed how fully email communication represents all possible communication channels in the project through an electronic questionnaire. The questionnaire was administered to a selection of 49 core project members who reported the frequency (daily, monthly or weekly) of their information exchanges with 77 project members (including the 49 surveyed members). The result of this cross validation was that for the 60 members for whom there was complete overlap between survey and email communication, 58% of their dyadic information exchanges had a near complete correspondence between survey and email communication, while 68% had a frequency weighted correspondence within 70% or more. Hence, we consider this email communication database as a good proxy for the majority of information exchanges in this project.

The person-person communication network was built with people as nodes and email exchanges between them as edges. The weight of the edges between project participants was calculated by counting the number of emails between a particular dyad for each temporal snapshot under analysis (i.e. each stage). This is equivalent to weighting edges by communication frequency.

Process domain data: Data about the process domain included a detailed list of project activities (used internally by the company for project management and reporting) as well as their information dependencies. After eliminating non-design activities and activities for which there was no valid match between a person in the email dataset and the activity log, a
total of 66 activities were determined to be suitable to form part of the dynamic network analysis. This final list was validated through interviews with the VP of Operations, VP of Engineering, and the project manager in addition to the company’s own technical documentation, which included workflow diagrams and Gantt charts.

With the help of company engineers, the activities were categorised into the 13 activity groups listed in Table 4. This first level of categorisation was based on the identification of cohesive work packages related to the subsystems under development or other common characteristics shared by the activities. A process-type DSM was then created to identify the planned relationships across the 13 activity groups. This DSM was based on information dependencies revealed by the project managers and existing workflow diagrams. The objective of this DSM analysis was to classify the activity groups in one of the three categories identified in section III (integrative work, integrative subsystem, and modular subsystem activities).

Based on company records and internal experts’ knowledge, an approximate chronological sequence of stages was established: Conceptual design occurred during the first four months of the project, starting in September 2009 and finishing by December 2009. System-level design was performed during a period of 10 months, between January and October 2011. Detailed design was performed during a period of about 14 months, between November 2011 and December 2012. Finally system integration was mainly performed during a period of 5 months, between January and May 2013.

Following the model proposed in section III, the network representation of actual information flows between activities is calculated as a function of information exchanges between people and the participation of people in activities.
Process-organisation mapping data: Data for the mapping between the process and organisation domain were obtained through a project-level activity log that registers each time any of the 66 activities was performed by a member of the project. This information was reported directly in a database at least weekly by the person performing the activity, who also logged the date when he/she performed the activity and the amount of hours invested. These reports are routinely used by the company to manage and track resources and to update the project budget and schedule. The level of detail available in this dataset, that in total amounted to 11,742 records, combined with the information about the organisation domain, allowed us to identify most of the possible pathways of information flow over time.

The person-activity network was built with people and activities as nodes and with the participation of people in activities as edges. The weight of the edge between a person and an activity was calculated by counting the number of activity records where the person reported work on an activity for each temporal snapshot under analysis. This is equivalent to weighting activities by frequency.

Table 4. Case study data summary

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>Relational Information</th>
<th>Temporality</th>
<th>Main Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>People</td>
<td>162 project participants from 15 functional areas who exchanged project related emails</td>
<td>20,127 internal email exchanges with metadata about sender, recipient, time and date</td>
<td>Directly extracted from email metadata covering the full period under analysis</td>
<td>Email dataset cross validated via electronic questionnaire</td>
</tr>
<tr>
<td>Activities</td>
<td>66 activities divided in 13 activity groups, subsequently classified into 3 activity categories</td>
<td>The work breakdown structure was used to identify information dependencies and to categorise activities</td>
<td>Each time an activity is performed by someone, it is registered with a timestamp and a number of hours (11,742 activity entries)</td>
<td>Project records</td>
</tr>
</tbody>
</table>

Activity categories (A, B, C) and activity groups (A1-A3, B1-B4, and C1-C6)

- **A: Integrative work activities**
 - A1: Overall project management
 - A2: Procurement
 - A3: On-site coordination

- **B: Integrative subsystem activities**
 - B1: Design of steel structures
 - B2: Load plan and layout
 - B3: Process flow diagram (PFD) + piping and instrumentation diagram (P&ID)
 - B4: COMOS (database related work)

- **C: Modular subsystem activities**
 - C1: Boiler and equipment design
 - C2: External piping design
 - C3: Pressure parts design
 - C4: Air and flue gas design
 - C5: Combustion system design
 - C6: Electrical, control and instrument design

Dynamic network analysis: We analysed one information flow network per stage, that is to say, all the activities and people active are analysed together at each engineering design
stage. As a result, the overall per-stage network structure is preserved and there is no need to use averages or other forms of aggregation that could affect network metrics. An alternative to this method is to analyse weekly or monthly network snapshots. However, the cost of this alternative is to be exposed to higher network variability, which also imposes additional difficulties to interpret the network results at the stage level. For simplicity, the analysis is performed symmetrising the network [38, p. 216]. This is consistent with the fact that communication networks tend to be reciprocal e.g. [33], and avoids the interpretational limitations of applying network metrics such as eigenvector centrality [37] and clustering coefficient [39], [40] to directed networks.

VI. ANALYTICAL RESULTS FROM THE CASE STUDY

In this section we present the results of applying our model of information flow between activities to the organisation and process data from our case study. To focus on the evolving information flow patterns discussed in section IV, we show here all network metrics calculated by process stage only. Also, given the relatively small amount of conceptual design work in this particular project, and the similarity of its expected information flow patterns with system-level design, these two stages have been combined. Such combination facilitates discussion of the results and keeps the focus on the most relevant patterns. Figure 3 and Table 5 show the results by stage and activity category.
Figure 3. Results of the empirical analysis by process stage and activity category. Section A) provides a count of activities. Sections B) and C) provide network level measures and Tukey box plots for centrality and clustering. All box plots show individual activities.
Table 5. Case study results summary

<table>
<thead>
<tr>
<th>Information Network Pattern</th>
<th>Conceptual Design and System-Level Design</th>
<th>Detailed Design</th>
<th>System Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>General description</td>
<td>In combination, these two stages are characterised by a relatively low number of activities, with close to half of them related to integrative work and integrative subsystem activities.</td>
<td>The number of activities in this stage increases, more than doubling from the previous two stages. Also, there are many more modular subsystem activities than integrative work and integrative subsystem activities.</td>
<td>The number of activities remains relatively unchanged from the previous detailed design stage.</td>
</tr>
<tr>
<td>Activity-level centrality</td>
<td>The centrality of activities in the modular subsystem category is much greater, as these activities now dominate the work. However, unlike the previous two stages, this higher centrality is now almost equally distributed among activities from different subsystems, including design activities from the pressure parts group, air and flue gas group and external piping group.</td>
<td>The centrality of activities in the modular subsystem group is still high. However, the increase in the centrality of the integrative work category makes their centralities now more comparable. This, in conjunction with a return to a more heterogeneous distribution of activities with high centrality (similar to the first two stages), provides evidence of a return to a more centralised network.</td>
<td></td>
</tr>
<tr>
<td>Network-level centralisation</td>
<td>Due to the influence of the most central activity, the overall network centralisations of these two stages are higher than any other stage.</td>
<td>Due to the more homogeneous distribution of activities with high centrality, the overall network centralisation of this stage reaches here the lowest level.</td>
<td>Overall centralization increases reaching levels only slightly below the conceptual design stage.</td>
</tr>
<tr>
<td>Activity-level clustering</td>
<td>The information networks of these stages are primarily clustered around integrative work activities belonging to the overall project management group.</td>
<td>All activity categories experience a higher level of clustering with integrative subsystem activities reaching here their maximum value in terms of clustering and centrality.</td>
<td>Clustering is much higher than what was found in conceptual and system-level design. Clustering is also lower in all categories when compared to the detailed design stage.</td>
</tr>
<tr>
<td>Network-level clustering</td>
<td>The overall network clustering of these two stages is lower than any other stage.</td>
<td>The overall clustering coefficient here is the highest among all stages.</td>
<td>The overall clustering coefficient decreases but remains higher than the levels found in the conceptual and system-level design stages.</td>
</tr>
</tbody>
</table>

Correspondence between theorised information flow patterns and empirical results:

Considering the results of the empirical analysis summarised in Figure 3 and Table 5, we find a high match between the expected patterns for each process stage and the actual information flow patterns. This tendency is evident, not only in the matching of centralisation and clustering at the overall network level, but also in terms of expected patterns at the activity category level.

For example, consistent with the expected information patterns set for each stage in section IV, conceptual and system-level design were dominated by activities in the integrative work category (more specifically in the overall project management group). These two stages also had a rather centralised information network, and exhibited relatively low process
modularity. Detailed design was dominated by activities in the modular subsystem category (including multiple activity groups), had a high process modularity (where coordination tended to be local rather than global), and coordination was supported not only by integrative work activities, but also by integrative subsystem activities. Finally, in system integration the trend of high process modularity found in the previous stage was replaced by an increase in overall centralisation, which can be linked to the expected subsystem integration needs.

VII. DISCUSSION

In light of our research questions, here we examine and discuss what has been presented in the previous sections.

Research question #1: How can we model and analyse actual information flows between activities through stages of complex engineering design projects?

This paper proposes a new model that integrates elements from previous network-based process models, takes advantage of dynamic network analysis tools, and of increasingly available rich data trails from activity logging systems, electronic project management tools, and internal communication platforms such as emails. The model builds on previous research on organisational information flow such as [20], [21], dynamic process models such as [26], [27], and models that combine aspects of process and organisation architecture such as [4], [33]–[36], providing altogether an improved analytical understanding of the dynamic information flow through activities by process stages. In order to quantify information flow changes at the activity and project level, this paper introduces the use of network centrality and clustering metrics that provides a consistent and replicable platform for analysis.

Addressing the need for a comparison base against which to interpret empirical results of the proposed model, we also translate qualitative systems engineering stage descriptions into a
theory of how information is expected to flow between activities in different engineering system stages.

Research question #2: What are the implications, for theory and practice, of a model to analyse actual information flows between activities?

The application of this model allowed us to identify distinct and measurable patterns in information centrality and clustering associated with different stages of the design process. Having means to identify such patterns is crucial to provide insights into the actual process and to start uncovering causal explanations [14, p. 16]. For example, design patterns can be compared against models that provide abstract descriptions of generic design processes. This also allows for a theoretically grounded interpretation of the patterns in light of previous research and what is suggested as best practices by prescriptive models.

In our case, the emergence of meaningful and interpretable patterns from the dynamic analysis of a period of over three years and thousands of valued dyads serves as a positive proof of concept for the approach proposed here. Moreover, and based on our empirical results, we claim that the information flow patterns revealed are related to the progression of the project, and as a consequence can be compared against idealised generic models in order to identify, and if necessary correct, unexpected and potentially undesirable information flow patterns.

Research implications: As a theoretical contribution, we provide evidence of relationships between the proposed measures for information centrality and information clustering and standard design stages. This serves to quantify information network properties for different stages of the design process, enriches previous descriptions and interpretations of the stages, and allows design researchers to develop process models that better fit observed project patterns. Furthermore, the existence of such patterns also serves as a quantitative indication
of distinct information networks in the different product development [5] and systems engineering stages [31]. This provides new evidence about the existence of distinct process stages that goes beyond a qualitative description of observable changes in the process.

The observed information flow patterns also allow a meaningful macro-level categorisation of activities into three classes based on their distinctive information centrality and clustering patterns and evolution. This validates, complements, and expands the categories introduced originally by Sosa [28]. We found that modular subsystem design activities, integrative subsystem design activities, and integrative work design activities are distinguishable not only based on company insights, observations, and static network models, but also based on their characteristic network dynamics. This allows researchers to perform simplified analyses, which instead of following the dynamics of each activity or activity group, only need to study the patterns of three activity categories to visualise a meaningful distribution of the information centrality and clustering linked to SE-V process stages [31].

Practical implications: Managerial implications include the provision of support to generate a quantitative overview of real designing patterns and compare them against prescriptive models, giving opportunities for reflections and changes when this is required. In particular, we argue that under normal conditions, projects that implicitly or explicitly follow the SE-V model, have a predictable pattern in terms of the evolution of information centrality and clustering among key activity categories. Deviations from the expected patterns could be an indication of a mismatch between the required architecture of information flows and the actual information flows in the project. Depending on the assessment, such deviations may require company actions or at least an understanding of the reasons for such a mismatch.

When our analysis is applied at a detailed activity level, and the appropriate tools to structure and analyse existent information are in place, our model can also be used to highlight periods in the process where multiple areas concurrently increase their information centrality,
potentially draining resources and generating complex coordination scenarios. Knowing more about these periods can help to defer activities that do not need to be concurrently active, while prioritising the ones with coupled subsystems that do require concurrency or iterations.

Another practical implication is based on an improved understanding of the nature of integration activities in complex engineering design projects. Existing prescriptive models of complex system design have either emphasised the high degree of coordination and integration required in product development e.g. [44] or suggested that modular design reduces the requirements for such coordination and integration e.g. [28]. In this paper, we offer more specific prescriptive guidance based on actual information flow patterns over the duration of the project – one that points to the difference between integrative and modular design activities and their coordination efforts over the duration of the project.

Limitations: The benefits of the proposed approach are realised mainly on large scale, complex engineering design projects following systems engineering stages. Conclusions will largely depend on already having a good understanding of the process and organisation architectures of the project under study. Furthermore, the approach is reliant on abundant and accurate dynamic data traces captured during the design process.

VIII. CONCLUSIONS

Through the model developed in this paper we offer means to dynamically quantify and analyse actual information flows between activities of complex engineering design projects, filling a literature gap between dynamic process and dynamic organisation approaches. This model allows connecting otherwise unknown designing patterns with stage-based models of the design process. As a result, opportunities for design process improvements are created based on active progress monitoring and analysis. With increasingly ubiquitous information systems that continually create logs of activities, communication platforms, and our
simplified activity categorisation, this approach can be used to support project management in engineering design projects without increasing reporting demands upon design engineers and project managers. The three key contributions of this paper are the development of a theory towards the evolution of information flows through systems engineering stages, a methodological contribution consistent of a network model to quantify information flows between activities, and an empirical application of the proposed approach that shows an empirical relationship between information flow patterns and process stages which is consistent with theoretical expectations.

Opportunities for further research include the examination of the same model and type of datasets when the unit of analysis is people instead of activities, enabling the study of questions at the organisational level. Also interesting are comparisons of information centrality measures across different projects and industries, which would allow evaluating if the overall patterns are ubiquitous or are project or industry specific. In addition, more research is required to explore the evolution of other network measures and their interplay with centrality measures. Finally, further studies could use dynamic network measures as independent variables and performance as a dependent variable in order to establish concrete connections between network structure and results.

REFERENCES

Information Flow through Stages of Complex Engineering Design Projects:
A Dynamic Network Analysis Approach

Appendix A: Formulas for network centrality and clustering

CENTRALITY

Eigenvector centrality¹ (node-level)

Eigenvector centrality is defined as the principal eigenvector of the adjacency matrix defining the network. The defining equation of an eigenvector is

$$\lambda v = Av$$

Where A is the adjacency matrix of the graph, λ is a constant (the eigenvalue), and v is the eigenvector. The eigenvalue and the constant are calculated through a power iteration algorithm such that $\lambda v = Av$

Eigenvector network centralisation² (network-level)

$$C_A = \frac{\sum_{i=1}^{\theta} [C_A(n^*) - C_A(n_i)]}{\text{max} \sum_{i=1}^{\theta} [C_A(n^*) - C_A(n_i)$$

Where C_A is the overall network centralisation

$C_A(n_i)$ is the eigenvector centrality measure of a given node i

$\sum_{i=1}^{\theta} [C_A(n^*) - C_A(n_i)]$ is the sum of the differences between the largest node-level eigenvector centrality value and the other observed values

And $\text{max} \sum_{i=1}^{\theta} [C_A(n^*) - C_A(n_i)]$ is the theoretical maximum possible sum of differences in node centrality, where the differences are taken pairwise between nodes.

CLUSTERING

Weighted clustering coefficient\(^3\) (node-level)

\[
C_i^w = \frac{1}{S_i(k_i - 1)} \sum_{j,h} \frac{(w_{ij} + w_{ih})}{2} a_{ij} a_{ih} a_{jh}
\]

Where \(C_i^w\) is the weighted clustering coefficient of node \(i\)

\(i\) is the focal node and \(j\) and \(h\) are nodes connected to \(i\)

\(k\) is the number of connections of node \(i\)

\(S_i\) is the strength of the connections to node \(i\), strength which is based on the total weight of the node connections \((k)\).

\(W_{ij}\) is the intensity of the interaction between focal nodes \(i\) and connected node \(j\) (for details about the calculation of this intensity please see Barrat et. al. 2004)

And \(a_{ij}\) is the adjacency matrix that includes focal node \(i\) and connected node \(j\)

Weighted overall graph clustering coefficient\(^4\) (network-level)

The overall graph-clustering coefficient is the average of the densities of the neighborhoods of all of the nodes. The "weighted" version gives weight to the neighborhood densities proportional to their size (nodes with larger neighborhoods get more weight in computing the average density).

Appendix B: List of activities per stage and category

<table>
<thead>
<tr>
<th>Activity Category</th>
<th>Activity Id</th>
<th>Eigenvector Centrality</th>
<th>Clustering Coefficient</th>
<th>Measure Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Conceptual Design and System-Level Design</td>
<td>Detailed Design</td>
<td>System Integration</td>
</tr>
<tr>
<td>Integrative Work Activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>510</td>
<td>0.407 0.051 0.028</td>
<td>0.000 0.167 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>511</td>
<td>0.258 0.154 0.143</td>
<td>0.000 0.378 0.400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>0.002</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>514</td>
<td>0.075 0.225 0.005</td>
<td>0.491 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>520</td>
<td>0.026 0.078 0.064</td>
<td>0.500 0.833</td>
<td></td>
</tr>
<tr>
<td></td>
<td>521</td>
<td>0.254 0.228</td>
<td>0.689 0.667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>570</td>
<td>0.013 0.043 0.003</td>
<td>0.000 0.333 0.667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>572</td>
<td>0.005</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>573</td>
<td>0.003</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>574</td>
<td>0.006 0.005</td>
<td>0.000 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>575</td>
<td>0.006</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>602</td>
<td>0.052 0.082</td>
<td>0.200 0.238</td>
<td></td>
</tr>
<tr>
<td></td>
<td>605</td>
<td>0.022 0.022</td>
<td>0.000 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>612</td>
<td>0.036 0.060</td>
<td>0.000 1.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>616</td>
<td>0.031</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>0.003 0.016</td>
<td>0.000 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8600</td>
<td>0.033 0.064</td>
<td>0.000 0.200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>0.047 0.017</td>
<td>1.000 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10001</td>
<td>0.053 0.069</td>
<td>1.000 0.333</td>
<td></td>
</tr>
<tr>
<td>Integrative Subsystem Activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>543</td>
<td>0.077 0.004</td>
<td>0.200 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>551</td>
<td>0.040 0.057 0.041</td>
<td>0.000 0.333 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>562</td>
<td>0.126</td>
<td>0.667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1700</td>
<td>0.181 0.029</td>
<td>0.643 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1900</td>
<td>0.152 0.106</td>
<td>0.417 0.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3005</td>
<td>0.066 0.008</td>
<td>0.500 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3100</td>
<td>0.074 0.025</td>
<td>0.867 0.000</td>
<td></td>
</tr>
<tr>
<td>Modular Subsystem Activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>541</td>
<td>0.079 0.020 0.019</td>
<td>0.000 0.167 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>560</td>
<td>0.148 0.084</td>
<td>0.306 0.400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>576</td>
<td>0.022 0.022</td>
<td>0.000 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>588</td>
<td>0.000 0.337</td>
<td>0.419</td>
<td></td>
</tr>
<tr>
<td></td>
<td>610</td>
<td>0.041</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.070</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3200</td>
<td>0.136 0.008</td>
<td>0.321 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>0.127 0.305 0.125</td>
<td>0.000 0.392 0.056</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4001</td>
<td>0.231 0.127 0.048</td>
<td>0.067 0.600 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4002</td>
<td>0.054</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4005</td>
<td>0.019 0.120</td>
<td>0.000 0.700</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4010</td>
<td>0.057 0.077 0.073</td>
<td>0.200 0.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4100</td>
<td>0.033 0.287 0.088</td>
<td>0.309 0.300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4400</td>
<td>0.195 0.157</td>
<td>0.291 0.476</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4500</td>
<td>0.300 0.171</td>
<td>0.288 0.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4505</td>
<td>0.057 0.047 0.027</td>
<td>0.167 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4600</td>
<td>0.003 0.062 0.082</td>
<td>1.000 0.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4700</td>
<td>0.160 0.306</td>
<td>0.762 0.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4900</td>
<td>0.098 0.077</td>
<td>1.000 1.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>0.311 0.042</td>
<td>0.637 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5400</td>
<td>0.189 0.038</td>
<td>0.309 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5600</td>
<td>0.125 0.061</td>
<td>0.600 0.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5800</td>
<td>0.093</td>
<td>0.143</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5900</td>
<td>0.086 0.025</td>
<td>0.200 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6005</td>
<td>0.024 0.027</td>
<td>0.000 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6200</td>
<td>0.052 0.113</td>
<td>0.333 0.467</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6300</td>
<td>0.067 0.079</td>
<td>0.190 0.667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7220</td>
<td>0.075 0.158 0.003</td>
<td>0.273 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7230</td>
<td>0.165 0.054</td>
<td>0.356 0.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7240</td>
<td>0.118 0.041</td>
<td>0.286 0.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7250</td>
<td>0.063 0.025</td>
<td>0.200 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7300</td>
<td>0.023 0.027</td>
<td>0.000 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7700</td>
<td>0.091 0.031</td>
<td>0.000 1.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8100</td>
<td>0.134 0.169</td>
<td>0.733 0.357</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8300</td>
<td>0.067 0.062</td>
<td>0.867 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8400</td>
<td>0.029 0.066</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8700</td>
<td>0.138 0.004</td>
<td>0.800 0.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8900</td>
<td>0.036</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9000</td>
<td>0.103 0.081 0.010</td>
<td>0.000 0.361</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9001</td>
<td>0.011</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

List of activities including their respective eigenvector centrality and clustering at each stage.