Microcontainers - an oral drug delivery system for poorly soluble drugs

Nielsen, Line Hagner; Petersen, Ritika Singh; Marizza, Paolo; Keller, Stephan Sylvest; Melero, Ana; Rades, Thomas; Müllertz, Anette; Boisen, Anja

Publication date:
2015

Document Version
Peer reviewed version

Citation (APA):
Microcontainers - an oral drug delivery system for poorly soluble drugs

Line Hagner Nielsen¹, Ritika Singh Petersen¹, Paolo Marizza², Stephan Sylvest Keller¹, Ana Melero², Thomas Rades³, Anette Müllertz³,4, Anja Boisen¹

¹Department of Micro and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
²Department of Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain
³Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
⁴Bioneer:FARMA, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

PURPOSE: To fabricate microcontainers in either SU-8 or biodegradable poly-L-lactic acid (PLLA), and fill the microcontainers with poorly soluble drugs. Furthermore, the application of the microcontainers as an oral drug delivery system was investigated in terms of release, *in situ* intestinal perfusion and oral bioavailability.

METHODS: SU-8 microcontainers were fabricated using lithography, whereas PLLA microcontainers were prepared by hot embossing. In terms of drug filling, the SU-8 microcontainers were filled with polyvinylpyrrolidone (PVP) by inkjet printing followed by supercritical CO₂ impregnation of ketoprofen into the PVP matrix. As an alternative filling method, the powder of amorphous sodium salt of furosemide, (ASSF) was filled into the SU-8 microcontainers. The PLLA microcontainers were filled with drug formulation by embossing the microcontainers into a polycaprolactone (PCL) and furosemide (4:1 w/w) layer. For the ASSF-filled microcontainers, an enteric-resistant lid of Eudragit L100 was spray coated onto the cavity of the microcontainers. Release of ASSF from the coated microcontainers was investigated using a µ-Diss profiler in simulated intestinal medium at pH 6.5. *In situ* intestinal perfusions were performed in rats of the Eudragit-coated ASSF-filled microcontainers and compared to a furosemide solution. The microcontainers were dosed to the small intestine, and at the end of the study, the small intestine was harvested from the rat and imaged under a light microscope. For the *in vivo* studies, the rats were dosed orally with capsules containing ASSF-filled microcontainers coated with Eudragit L100. As control, capsules were filled with the powder of ASSF and the capsules were coated with Eudragit L100.

RESULTS: The SU-8 microcontainers had an inner diameter of 220 µm and a cavity depth of 270 µm, and for the PLLA microcontainers the inner diameter was found to be 240 µm and with a cavity depth of 65 µm (Figure 1). The microcontainers were successfully filled with either PVP:ketoprofen, ASSF or PCL:furosemide. A fast release of ASSF from the microcontainers was observed and the Eudragit coating was shown not to be a hindrance for rapid release at intestinal conditions. For the intestinal perfusion studies, the absorption rate constant of ASSF was 1.5 fold higher, when ASSF was confined in the microcontainers compared to a furosemide solution. Micrographs of the small intestine after the perfusion studies showed that the microcontainers interact with the mucus in the small intestine, and the microcontainers are engulfed by the intestinal mucus. The oral bioavailability study showed that the relative oral bioavailability of ASSF in microcontainers is 220±43% when compared to drug-filled capsules coated with Eudragit. This is reflected by a larger area below the curve for the ASSF in microcontainers (Figure 2).

CONCLUSIONS: Both SU-8 and biodegradable PLLA microcontainers were successfully fabricated and loaded with poorly soluble drugs. A fast release of ASSF was facilitated from the SU-8 microcontainers.
Furthermore, the microcontainers were found to interact with the intestinal mucus resulting in a higher oral bioavailability when compared to non-confined ASSF. The fabricated microcontainers therefore show considerable future potential as oral drug delivery systems.