Iridoids in Hydrangeaceae

Gousiadou, Chryssoula; Li, Hong-Qing; Gotfredsen, Charlotte Held; Jensen, Søren Rosendal

Published in:
Biochemical Systematics and Ecology

Link to article, DOI:
10.1016/j.bse.2015.12.002

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Iridoids in Hydrangeaceae

Chrysoula Gousiadoua, Hong-Qing Lib, Charlotte Gotfredsena, Søren Rosendal Jensena,*

aDepartment of Chemistry, Technical University of Denmark, DK-2800, Lyngby, Denmark
bSchool of Life Science, East China Normal University, Shanghai, China

Abstract
The distribution of the iridoid and secoiridoid glucosides as well as the known biosynthetic pathways to these compounds in the family Hydrangeaceae has been reviewed. Loganin and secologanin and derivatives of these are common in the few genera investigated. However, the genus \textit{Deutzia} is characteristic in containing more simple iridoids in which C-10 has been lost during biosynthesis, such compounds are otherwise only reported from \textit{Mentzelia} (Loasaceae). In the present work, also \textit{Kirengeshoma} and \textit{Jamesia} have been investigated. The former contains loganin and secoiridoids, including the alkaloid demethylalangiside. The latter contains no iridoids, but the known glucosides arbutin, picein and prunasin. The taxonomic relationships between Hydrangeaceae and the closely related Cornaceae and Loasaceae is discussed and found to agree very well with recent DNA sequence results.

* Corresponding author. Tel.: +45-45252103; fax: +45-45933968.
E-mail address: srj@kemi.dtu.dk (S.R. Jensen).
| Figure S1 | 1H NMR (CD$_3$OD, 500 MHz) of 6-OH-sweroside (37) | 3 |
| Figure S2 | 13C NMR (D$_2$O, 50 MHz) of 6-OH-sweroside (37) | 4 |
| Figure S3 | 1H NMR (CD$_3$OD, 500 MHz) of demethylalangiside (38) | 5 |
| Figure S4 | 13C NMR (CD$_3$OD, 100 MHz) of demethylalangiside (38) | 6 |
| Figure S5 | 1H NMR (D$_2$O, 500 MHz) of arbutin (40) | 7 |
| Figure S6 | 13C NMR (D$_2$O, 50 MHz) of arbutin (40) | 8 |
| Figure S7 | 1H NMR (D$_2$O, 500 MHz) of picein (41) | 9 |
| Figure S8 | 13C NMR (D$_2$O, 125 MHz) of picein (41) | 10 |
| Figure S9 | 1H NMR (CD$_3$OD, 500 MHz) of prunasin (42) | 11 |
| Figure S10 | 13C NMR (D$_2$O, 50 MHz) of prunasin (42) | 12 |
Figure S1

1H NMR (CD$_3$OD, 500 MHz) of 6-OH-sweroside (37)
Figure S2

13C NMR (D$_2$O, 50 MHz) of 6-OH-sweroside (37)
Figure S3
1H NMR (CD$_3$OD, 500 MHz) of demethylalangiside (38)
Figure S4

13C NMR (CD$_3$OD, 125 MHz)

of demethylalangiside (38)
Figure S5
1H NMR (D$_2$O, 500 MHz) of arbutin (40)
Figure S6

13C NMR (D$_2$O, 50 MHz) of arbutin (40)
Figure S7

1H NMR (D$_2$O, 500 MHz)
of picein (41)
Figure S8
13C NMR (D_2O, 50 MHz) of picein (41)
Figure S9

1H NMR (D$_2$O, 500 MHz) of prunasin (42)
Figure S10

13C NMR (D$_2$O, 125 MHz) of prunasin (42)