Downloaded from orbit.dtu.dk on: Jun 02, 2023

DTU DTU Library

i

Evolutional development of controlling software for agricultural vehicles and robots

Nakanishi, Tsuneo; Jaeger-Hansen, Claes Lund; Griepentrog, Hans-Werner

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Nakanishi, T., Jeeger-Hansen, C. L., & Griepentrog, H-W. (2012). Evolutional development of controlling
software for agricultural vehicles and robots. Paper presented at 3rd International Conference on Machine
Control & Guidance, Stuttgart, Germany.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://orbit.dtu.dk/en/publications/13c868e9-7222-4e50-86bf-f7c5a65816d6

3% International Conference on Machine Control & Gunide, March 27-29, 2012

Evolutional Development of Controlling Software
for Agricultural Vehiclesand Robots

Tsuneo NakanishiClaes Jager-Hansérand Hans-Werner Griepentrog
YFaculty of Information Science and Electrical Erggring, Kyushu University, Japan
%|nstitute of Agricultural Engineering, Universit§ Blohenheim, Germany

Abstract

Agricultural vehicles and robots expand their collitig software in size and complexity for their
increasing functions. Due to repeatad, hocaddition and modification, software gets strudtyra
corrupted and becomes low performing, resourcewumg and unreliable. This paper presents an
evolutional development process combini@gftware Product LindSPL and eXtreme Derivation
Development ProcegXDDP). While SPL is a promising paradigm for succelssfuse of software
artefacts, it requires understanding of the whgktesn, a global and future view of the system, and
preparation of well managed core assets. By csmivehile XDDP is a less burden process which
focuses only on the portion to be changed in tlve sysstem, it never prevents software structure from
corrupting due to absence of the global view ofdhgtem. The paper describes an adoption process
for SPL, with an example of the autonomous tradioai applies XDDP initially for addition and
modification of functions, accumulates core asaet$ cultivates a global view of the system through
iterated development with XDDP, and finally shiftsSPL development.

Keywords
Software Evolution, Software Development Procesfivwiare Product Line, Derivative Development

1 INTRODUCTION

The agricultural vehicle has been getting to previdore operator friendly services. Its evolution
toward the unmanned vehicle is a definite trenditsfinal goal should be the autonomous robot with
intelligence. In this forecasted evolution, emieidoftware controlling agricultural vehicles and
robots will play an important role more than beforlost of intelligent and attractive functions to
automate agricultural tasks are implemented mawglgoftware. These functions must analyse data
from various sources including on-board sensorsS,Géther vehicles or robots, base stations,
databasesgtc; make sophisticated decisions; and drive multipkchanical devices such as engine,
brake, various implementstc. in a coordinated manner through networks sudbAds, ISOBUSetc
Software implementing these functions grows qudsilg in size and complexity. In fact, for the
decade and more, automotive industry has expeuest®ep increase in size and complexity of
software brought by integrated functions. Accogdio Broy, 2006, in the general passenger vehicle,
more than 2,000 functions were controlled by softwahe size of the source code was over ten
million lines; and 50 to 70% of development cosswiadicated for software. It is almost impossible
to construct correctly working software of suchglascale by code centric development without well-
defined sound process.

Besides size and complexity, variability can @dig issue in agricultural vehicles and robots.
Agricultural vehicles and robots perform differetasks for different crops under different
geographical, climatic, and economic environmenthey employ different technologies, namely
hardware and mechanical devices, and the techmasldgemselves will evolve. These diversities in
agriculture and technology finally result in a hgeount of variability in software.

Basically, repeated additions and modificatians applied to the existing software in evolutadn
software. Asad hocadditions and modifications are repeated, softisasgructurally corrupted and
become low performing, resource consuming and iatnel

This paper discusses evolutional developmensadfware. The authors propose to introduce
software product lindSPL) [Clements & Northrop, 2001; Pokt al, 2005], a paradigm of software

3% International Conference on Machine Control & Gunide, March 27-29, 2012

reuse for different products, for steady evolutiathout corruption of software structure. Howewer,
is often difficult to adopt SPL without preparati@ven for development sites having concrete
development processes for single product developmdiereover, SPL requires a global view of the
current and future agricultural vehicles and ropetkich is difficult to foresee for a long term.
Therefore, the authors also propose to perform Steregtions of theextreme derivative development
procesgor XDDP for short) [AFFORD] until SPL development gets kiqable.

This paper is organized as follows: Sectigivas some fundamental concepts on SPL. Section 3
describes XDDP in comparison with SPL. Sectiorhdvwss our ideas on evolutional development
starting from XDDP and shifting toward SPL. Fiyalbection 5 concludes the paper.

2 PARADIGM OF SOFTWARE PRODUCT LINE

SPL development enables production of various so#vsystems with different functionality and
quality, namely software product line, in a strédeand planned manner by optimally constructing and
reusing core assets shared among the systems.

SPL is absolutely not a development method to predlifferent products by using libraries, which
store codes reusable in other products, imcmog code centric, individual skill dependent manner.
SPL development is driven by business and techplaak of the product line. Essential plans aee th
scope and the road map of the product line thahele@fhich products are in and out of the product
line at a certain time. Artefacts steadily reusedhe products in the plans are constructed and
maintained as the core assets of the product liflee core assets include not only codes but also
artefacts in upper sub-processes such as requitenspecifications and designs. They are reused to
construct each product by a prescribed manneyan individual manner.

SPL is a paradigm of software reuse among diffemotiucts, rather than a certain software
development methodology. A lot of methodologied aase studies based on the SPL paradigm have
been presented and reported by academic reseamersdustrial practitioners for the last ten to
fifteen years. Some fundamental concepts in the @#adigm, which are described below, are
introduced in these works:

Separation of domain engineering and applicatiogieeering Domain engineering is a set of
activities to construct and maintain core assetshfie whole product line. Application engineeriag
a set of activities to develop each product by irgusore assets. These are clearly distinguished i
SPL development. Moreover, management to coomlirimain engineering and application
engineering is also essential. Figure 1 showsistamce of the SPL development process.

Separation of commonality and variability Commonality and variability among products are
analysed in SPL development. Commonality and ditia are often described in terms f&fatures
which can be defined as any prominent and distiaatoncepts or characteristics that are visible to
various stakeholders of the system [Kagigal, 1990; Leeet al, 2002]. Analysed features are
categorized in terms of constraint of its selectioreach product and organized ageature model
[Kanget al, 1990]. Each product is distinguished by its ppirg features.

Figure 2 shows an illustrative example feature rhofl@n imaginary autonomous tractor product
line. Each node of the feature model represefdéatare. A node without any decoration represants
mandatoryfeature, which should be equipped by all the pet&lu A node with circular decoration
represents apptional feature, which may or may not be equipped by gaoduct. A set of nodes
bundled by an arc represemti$ernative features such that one of them is alternativelyigmpd by
each product. Regardless of its category on setecionstraint, the feature is not equipped by a
product if its parent feature is not equipped ie firoduct. The edge between nodes represents
semantic relationship between corresponding featu@®nsists-ofelationship means that the parent
feature consists of the child feature; that is, thdd feature forms a part of the parent feature.
Generalizatiorrelationship means that the parent feature isnergdized concept of the child feature.
Implemented-byelationship means that the parent feature iszezhby the child feature. Consistent
selection of features on the feature model spac#iproduct.

3% International Conference on Machine Control & Gunide, March 27-29, 2012

Domain Engineering

Y

Product Line > Product Line > Product Line > Product Line
Req. & Spec. Design Implementation Testing

construct
and
maintain

Core Assets

|
______ 8 |_ _requestaddition_ _ | ____| _______| ___J_______ | ___]___
3 modification and
corrgction

| [I 1 [L1

Product > Product > Product > Product
Req. & Spec.

Design Implementation Testing

Application Engineering

Figurel: SPL development process

_— consists-of Autonomous
Tractor

—_— generalization
e implemented-by / \\O

Autonomous Pulughing Seeding

Route Route Obstacle
Planning Following /Avoidance
Global Driving Steering 3P Hitch Obstacle Avoidance
Positioning Control Control Control Detection T/actiris
/ \
/ \
L I ’ C:C%t
aser . mage
GPS Odometory Gyro Scanner Ultrasonic Recognition Stop Around

Figure2: Feature Modéel

Architecture centric developmentn SPL development, software architecture istdisthed with
considering the results of commonality and varigbilanalysis to enable comprehensive and
disciplined product derivation in application erggning. Core assets are also constructed to be
applicable to the architecture. Application engiiey is allowed to reuse core asset components at
predefined points, referred to ariation points in the software architecture in a prescribed reann

Separation of problem and solution spac@se problem space is a space storing variabilibgels
of the product line. The feature model is a repméegtive artefact in this space. On the other htned
solution space is a space storing other artefact®ss various abstraction levels including
requirements, specifications, designs, implemesrati and testing. Traceability from the problem
space to the solution space is somehow kept in &elopment. For example, requirement,
specification, design, implementation and testirigfacts in the solution space are tagged by aifeat
at the portions in where the feature is realiz8dhis traceability eases product derivation based on
feature selection in application engineering.

Inherently, SPL is a development paradigm whicluireg a global and future view of the product
line and definition of software architecture conigeding the whole product line. Most of
development sites already have some working systmfre introducing SPL. It is essential to

3% International Conference on Machine Control & Gunide, March 27-29, 2012

understand the whole system to define the softweckitecture of the product line. However, that
makes introduction of SPL prohibitive for large aswmplicated systems due to excessively growing
cost of domain engineering, time limitation, hunmasource limitation, lack of reliable documeats
Moreover, it is often too difficult to foresee futuevolution of the product line for innovative
products such as agricultural robots.

Another adoption problem of SPL is the maturityeleof the development site. At least, it is
hopeless for development sites continuing codericathévelopment to introduce SPL successfully. It
requires a sound development process and docunrersough quality and quantity to perform
domain engineering.

To alleviate these adoption barriers, the authoopgse to introduce a derivative development
process and then shift to SPL development.

3 XDDP: A DERIVATIVE DEVELOPMENT PROCESS

XDDP, which stands foeXtreme Derivative Development Procgs$FORD], is a derivative
development process introduced to developmentisitdgpanese industries [Kobata, 2010]. XDDP is
a development method to produce new products bingdohd modifying an existing product. XDDP
can be used as a development process to proddiesedif products with commonality and variability
likewise for SPL. However, XDDP is establisheddapdndently from SPL and, in fact, it does not
have fundamental concepts of SPL described in @e&i For example, XDDP does not have the
concept of the core asset. XDDP modifies the Ipsieduct to construct a new product, instead of
combining core assets. Figure 3 shows the overabewDDP. Each circular node in the figure
represents a sub process of XDDP. Due to pagtation, the details of each sub process are omitted

reverse
engineered docs
change regs &
specs

source codes of
the base product

Realiaze change
regs.

Update test
cases

test cases

Integrate
programs and
perform testing.

\/\

modified source
codes

\/_\

change design
docs

existing docs & reqs & specs for e

additional
references

_/\ functionalities

change reqs

\/\

source codes of
the new product

source codes for
additional
functionalities

Realize regs on design docs for
additional additional
functionalities. functionalities

regs on additional
functionalities

module design
docs for additional
functionalities

Figure 3: Overview of XDDP

XDDP starts development of a new product from dbsgy change requirements and specifications
to the base product as well as requirements andfigpgions for additional functions. Change
requirements and specifications are different fammonly known requirements and specifications
in that they regard desired changes, not desiradtibnality and quality, for the new product as
requirements and specifications. Change requiresrae description on what the stakeholder of the
new product wants to be changed from the base ptod€hange specifications are description

3% International Conference on Machine Control & Gunide, March 27-29, 2012

specifying, namely describing without any ambiguiypw the base product should be modified to
satisfy the change requirements. On the other,haiirements and specifications for additional

functions are same as commonly known requirememds specifications except they are only for

additional functionalities. Note that change reguients and specifications can also include all the
modifications to the base product caused by addititunctions.

Table 1 shows an example of change requirementsspadifications. The example is error
correction in longitude and latitude observed bySGRie to tilt of the tractor. (See [Eriksen &
Jeeger-Hansen, 2010] for the details.) Change nemgents and specifications are described with
keeping their correspondence. A change requirengeribllowed by the change specifications
satisfying it. Moreover, the change requiremerdriaotated by its reason to make the context of the
requirement explicit.

Table 1. Change requirements and specifications

TiltComp Change Req | Want to correct the error in longitude and latitudeserved by
GPS due to tilt of the tractor.

Reason Errors non-negligible for precise agricultural taskare
produced depending on tilt of the tractor, becailme GPS
antenna is attached at a distant and higher positam the
reference point in the tractor.

TiltComp.1 | Change Spe¢ Add a task to interfaceitikcBnation sensor, get the roll and
pitch angles of the tractor and apply LPFs to thseoved roll
and pitch angles for noise reduction.

TiltComp.2 | Change Spe¢ Let the Kalman filter in tilebal positioning task, which is
used for better estimation of the position, use pamsated
longitude and latitude for its input, instead ofvangitude and
latitude from GPS. Leh,, be the height of the antenna,
Oxaiman the angle of the tractor coordinate system toglbbal
coordinate system estimated by the Kalman filted &,; and
Bpitch the filtered roll and pitch angles respectivelihe errors
to real latitude and longitude due to tilt of thactor, denoted
by &10ng @andey,; respectively, are expressed as follows:

Slong =h COS(HKalman + eP-R)
Elat = h Sin(HKalman + QP-R)

where h = hype [sin? O +5i0% 6, and O, p =

tan~1 30l These errors are added to longitude and latitude

Sin Bpitcn
observed by GPS for compensation.

Change design documents describes necessary madidifido the existing design to satisfy the
change specifications, namely how the modules ef ilhse product should be modified. The
traceability matrix makes the change design doctsngaceable from the change requirements and
specifications. Table 2 is an example of the @mhdity matrix after module design for the change i
finished. The traceability matrix shows which mtedoorresponding to a column should be modified
to realize each change requirement or specificatimresponding to a row by the check mark “X".

It will be necessary to engineer the current im@etation reversely to describe change
specifications and the traceability matrix, if thecuments on the current implementation are not
available. The results of reverse engineeringdreumented and referenced to describe change
designs.

In the final stage, existing source codes of theebproduct are modified with referencing
traceability matrix and change design documentsatisfy change requirements and specifications.
Ad hocmodification of existing codes often causes nemigoduced bugs. Objective of tHazy and

3% International Conference on Machine Control & Gunide, March 27-29, 2012

planned code modification strategy is to avoid weseary waste of time for repeated correction due
to the bugs newly introduced by modification.

Table 2: Traceability matrix

Req/Spec ID)) Q) @) O
@ @ 14 @ = =
) o) = S 2 &
o Q. — — (V)]
S o = ©) &
) 3 e o @ 3
3 9] @ < = =,
S 5228 |&]3s
= S
o «Q
8 ©
T
o
wn
TiltComp X X
TiltComp.1 X X
TiltComp.2 X

While SPL is plan driven as described in SectiotXRDP is basically change driven. XDDP
focuses only on changes to the base product. Dectsnare produced only for the changes. It can
safely state that, although XDDP has less adofitéoriers than SPL, XDDP will not prevent software
structure from corrupting if it is repeatedly aggliwithout any global and future view of the praduc
line.

4 EVOLUTIONAL DEVELOPMENT TOWARD SPL

XDDP assumes existence of neither core assetsdfiwvase architecture. It accepts the current
software architecture of the base product and nexdidnly the portions of the base product to be
changed for the new product. Naive derivation ek products by XDDP does not accumulate core
assets, recover the software architecture, andylbméform to SPL development. For steady and
affordable shift toward SPL development, the awghailor XDDP to facilitate mining of core assets
from existing artefacts and cultivate the globa&withrough its iterations. The tailored XDDP, whic
is named as XDDP4SPL here, follows the processithestchbelow.

Describing requirements and specifications befand after changes The original XDDP describes
change requirements and specifications for deawatf a new product. XDDP4SPL additionally
describes requirements and specifications beford after changes in separate. Thefore
requirements and specifications are imported fromstiag ones of the base product, or engineered
reversely from the source codes of the base pratinotdocument on requirements and specifications
is available. Theafter requirements and specifications are newly deedribased on change
requirements and specifications.

Although readers may think that change requiremants specifications are no longer necessary,
they should be kept withefore andafter- requirements and specifications for some reasons.

One reason is that desire for succeeding prodeatdtén described as changes to the proceeding
products at first. Moreover, the changes are desitrin various abstraction levels by various
stakeholders of the product line. Some changesbrajescribed by users at the abstraction level of
requirement as additional or improved functionghed changes may be described by engineers at the
abstraction level of specification without explaigiwhy the changes are needed.

Another reason is that change requirements andfisp¢ions describe why one function is newly
introduced and record evolution of the product.lifdvese documents are helpful for engineers newly
involved in the project to understand the prodina better than each function is explained solely.

3% International Conference on Machine Control & Gunide, March 27-29, 2012

Before and after- requirements and specifications should be trdeefibm their corresponding
change requirements and specifications. Tableo8vsta possible descriptionBefore and after-
requirements and specifications are traceable dpyinement and specification IDs in this description

Table 3: before- and after- requirements and specifications

TiltComp Before Req | Want to know the current position of the tractothout taking
account of tilt of the tractor.
TiltComp After Req | Want to know the current position of the tractwith taking
account of tilt of the tractor.

TiltComp.1 | Before Spec¢
TiltComp.1 | After Spec | Get the roll and pitch angdéshe tractor periodically and apply
LPFs to the observed roll and pitch angles foraoluction.
TiltComp.2 | Before Spe¢ The Kalman filter in the lghb positioning task usesaw
longitude and latitude from GPS for its input.

TiltComp.2 | After Spec | The Kalman filter in the ghdb positioning task us
compensated longitude and latitude for its input. (See Table
for the details of the compensation.)

o (D

Performing local variability modelling XDDP4SPL performs local variability modellingrfohe
limited portion of the system to be changed foresvproduct. With comparinbefore andafter-
requirements and specifications, it becomes e&siatentify common and different aspects such as
structures, behaviours, and properties among ptedaied define features. Different description
betweenbefore andafter- requirements and specifications, which are irdteoid underlined texts in
Table 3, is a basis to identify features. Featimd#ectly related to the changes do not appear in
before and after- requirements and specifications. Instead, thay found in reverse engineered
documents. Variability possibly introduced in figushould be identified during local variability
modelling.

The primary object of this partial feature moda]liis better separation of variability, which will
bring better modularization and interface design feuse among products. Features should be
identified such that commonality and variabilite arleanly separated. A common feature must not
include variable aspects awnite versa Moreover, variable features should be orthodgrsaparated.

A variable feature should not include multiple agpenhich are in different concepts or abstraction
levels. Guidelines on feature modelling [Lee, J08& also helpful for good feature modelling.
Other objectives of local variability modelling dretter understanding and intuitive representasion
the portion directly and indirectly related to ttleanges.

Figure 4 shows an example of the local feature odde features identified frorbefore and
after requirements and specifications ardt Compensationand Inclination Sensing Global
Positioningis identified as the parent featureTaft Compensatiorin consists-ofrelationship, since
Tilt Compensationis for Global Positioning Kalman Filtering is a feature identified in reverse
engineered documents. It is also a sub featu@alfal Positioningin consists-ofelationship. Both
Kalman FilteringandTilt Compensatiorare modelled as optional features to enable cgsetato be
reused for tractors without gyro, odometory, ardimation sensors.

Global Positioning

LT

Kalman Filtering Tilt Compensation
GPS Gyro Odometory Inclination

Figure4: Local Feature M odel

3% International Conference on Machine Control & Gunide, March 27-29, 2012

Describing partial requirements and specificatidios the product line Based on théefore and
after- requirements and specifications, the local featmodel, and reverse engineered documents,
partial requirements and specifications for thedpm line are described. Local variability modwdli
and description of partial requirements and speatifins can be performed iteratively. The partial
requirements and specifications become core asf#te product line.

Table 4 shows an example of partial requirements specifications. The conditional expression
written in the brackets ([]) is a guard expressiepresenting a feature selection such that the
specification is activated. The term in the expi@s becomes true if and only if the feature of the
same name is selected in the product.

Table 4: Partial requirements and specifications

GlobalPos Req Want to know the current position of the referepomt.

GlobalPos.1 Spec Get the current position, nanmtgitude and latitude, of the
tractor from the GPS receiver.

GlobalPos.2 Spec Get the roll and pitch anglesefttactor from the inclination

sensor and apply LPFs to the observed angles fige ho
reduction. [Inclination]
GlobalPos.3 Spec Compute errors in longitude atitdidiz observed by GPS to the
reference point due to tilt of the tractor (See |&ab for the
details of the compensation.) and add them to theent
position of the tractor from the GPS receiver fompensation
[Tilt Compensation]

GlobalPos.4 Spec Get the direction of the traatomfthe gyro sensor and apply
LPFs to the observed direction for noise reducti@yro]

GlobalPos.5 Spec Get the odometory data of théotrérom the odometory sensor
and apply LPFs to the observed data for noise tamhug
[Odometory]

GlobalPos.6a| Spec Input the raw or tilt compensaterent position, the direction,

and the odometory data of the tractor into the Kairfilter for
better estimation and output the results as theegtposition of]
the reference point. [Kalman Filtering]
GlobalPos.6b| Spec Output the results as the cupasition of the reference poin
['Kalman Filtering]

—

Performing additional design and implementation amdiactoring existing artifacts Design and
implementation for partial requirements and speatfons should be performed. Design and
implementation for additional functionalities am@nstructed newly because there is no asset for.them
Existing design artefacts relating to the changesrafactored if they are available, or engineered
reversely from the codes otherwise. Existing cagdeting to the changes are also refactoreds It i
essential to introduce variation mechanism, whitcabées product derivation by combination of core
assets depending on feature selection, such asg@as, conditional compilation, common interface,
inheritancegtc [Anastasopoulos & Gacek, 2001; Gomaa & Webbed4P0

Figure 5 shows the overview of XDDP4SPL. IterattdrXDDP4SPL, which is driven by changes,
accumulates core assets including partial featuoelets, partial requirements and specifications,
refactored design artefacts and codes, and reemgi@meered documents. These locally mined or
produced core assets should be sooner or latgratésl in a global framework of the product line.

To guide this integration of core assets and fatdi shift toward SPL development, the authors
present a status model of the feature. The stabdel definesvisible andinvisible features. The
visible feature is one that the modeller has retzagh(and thus the visible feature can be modetied
the feature model). Invisible features, which tin@deller has not recognized yet, are concealeldein t
explored portion of the existing system. The iibles feature becomes a visible feature, when it is
exposed by reverse engineering work, expert knayeett.

3% International Conference on Machine Control & Gunide, March 27-29, 2012

Perform
local variability
modeling.

reverse
i ed docs Integrate
change regs & regs & specs.

specs

Perform
additional design
and refactoring
for partial PL
regs & specs.

regs & specs for from fea
additional

functionalities

source codes of before- and after- Intggtﬁ_te global
the base product regs & specs variability feature model
L models.
local feature model
Describe <—/’/
change reqs Analyze partial PL
¢ req change regs. reqs & specs.
—__— partial
PL regs & specs entire
with traceability PL regs & specs
from fea with traceability

Integrate
regs & specs
assets.

for partial PL partial PL codes

entire
PL design docs
Integrate with traceability
design assets wfes\
ds & spec with traceability

from features entire
existing docs & \/\ 4 PL codes
references Integrate code with traceability
assets L_from feglures~

Figure5: Overview of XDDP4SPL

partial
PL design docs
with traceability

_from fegtures—|

Analyze
regs on
additional
functionality

Perform
additional
implementation
and refactoring

reqs on additional
functionalities

Moreover, for the visible feature, the status modeks two dimensions: scope of feature
identification and traceability to core assets.tdrms of scope of feature identification, the fieatis
categorized intdocally identified featureor globally identified feature The locally identified feature
is one identified in a limited scope of the prodiim¢. The globally identified feature is one itiéad
in the full scope of the product line. In termstiafceability to core assets, the feature is caisgmh
into core asset traceable featuoe core asset untraceable featur@he core asset traceable feature is
one that is traceable to its related core asséte core asset untraceable feature is one thaitis n
traceable to its related core assets. Thus, daitflevfeature has four kinds of status in our mhode

The feature identified in XDDP4SPL becomekeally identified& core asset traceabl&eature,
since its related artefacts are incorporated ie e@sets in a traceable manner. [Doally identified
& core asset traceabléeature promotes to gobally identified & core asset traceableature, when
its position in the global feature model is detered with understanding of the whole product line.

The feature identified in the top-down manner basadexpert knowledge initially becomes a
globally or locally identified & core asset untraadde feature depending on the scope of the expert
knowledge, since its related artefacts are notr @tall. Theglobally or locally identified & core
asset untraceabléeature promotes to globally or locally identified & core asset tracdalfeature,
when its related artefacts are incorporated in @@®ets in a traceable manner after XDDP4SPL
iteration or reverse engineering work.

This categorization of the feature is used to sdpathe portion to where SPL development is
applied and the portion to where derivative develept is applied in the system. Shift to perfedt SP
development is achieved when i) all the visibledess argylobally identified & core asset traceable
and ii) invisible features are believed to be wiped

5 CONCLUSION

This paper presented an evolutional developmentgss combining SPL and XDDP, which the
authors referred to as XDDP4SPL. The process idolsws: i) Change requirements and
specifications are described with focusing on cleartg the base system as XDDP does. ii) Based on
the change requirements and specificatidoefpore and after- requirements and specifications are
described to make commonality and variability betwée¢he base system and the new system. iii)
Local variability modelling, which constructs a &ddeature model, is performed for better sepanatio

3% International Conference on Machine Control & Gunide, March 27-29, 2012

of variability and better understanding and int@trepresentation of the portion related to thengka.

iv) Partial requirements and specifications, whéch incorporated in core assets, are described with
establishing traceability from features. v) Exigtidesign artefacts and codes are refactored with
introducing variability mechanisms to enable pradigrivation by combination of core assets.

Core assets accumulated through some iteratioX®DIP cultivates global view of the system and
enables shift to SPL development. To guide intémneof core assets and facilitate shift toward SPL
development, the paper presented a status modleé déature in the existing system. The feature is
categorized into invisible and visible featuresheTvisible features is categorized into four classe
namely {locally-identified globally-identified} X { core asset traceableore asset untraceable

The future works include application and evaluatitbtrXDDP4SPL to develop additional functions
for the autonomous tractor.

ACKNOWLEDGMENT
This work was supported by Grant-in-Aid for Youngehtist (B), KAKENHI (No. 21700035).

REFERENCES

Books:

Clements, P. and Northrop, ISoftware Product Lines: Practice and PatterAsldison-Wesley, 2001.
Pohl, K., Bdckle G., and Linden, F. v. &oftware Product Line Engineering: Foundations neiples
and TechniquesSpringer, 2005.

Conference papers:

Anastasopoulos, M. and Gacek, [aplementing Product Line VariabilitieProc. Symp. on Software
Reusability (SSR) '01, pp.109-117, 2001.

Broy, M.: Challenges in Automotive Software Engineerifgoc. 28th Int. Conf. on Software
Engineering, pp.33-42, 2006.

Gomaa, H. and Webber, D. IModeling Adaptive and Evolvable Software Producteki Using the
Variation Point Model Proc. 37th Hawaii Int. Conf. on System Scien2€94.

Lee, K., Kang, K., and Lee, JConcepts and Guidelines of Feature Modeling fordei Line
Software EngineeringProc. 7th Int. Conf. on Software Reuse, pp.622002.

Kobata, K., Nakai, E., and Tsuda, Process Improvement Using XDDP: Application of XDioRhe
Car Navigation SystenProc. 8 World Congress for Software Quality, Nov. 2011.

Technical reports:

Kang, K., Cohen, S. G., Hess, J. A., Novak, W.dad Peterson, A. SEeature-Oriented Domain
Analysis (FODA): Feasibility StudySoftware Engineering Institute, Carnegie Mellonivérsity,
CMU/SEI-90-TR-222, Nov. 1990.

Thesis:

Eriksen, J. and Jeeger-Hansen, GPS-Styring af MalerobofGPS Control of Painting Roboin
English), Department of Electrical Engineering, figical University of Denmark, Aug. 2010. (in
Danish)

Links:
AFFORDD: Association for Facilitation of Rationalebvational Development, http://www.xddp.jp,
last accessed on October 10, 2011. (in Japanese)

