Scanning Electron Microscopy for Characterization of Polymers

Mateiu, Ramona Valentina; Wagner, Jakob Birkedal

Publication date: 2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Introduction

The scanning electron microscope (SEM) is a multifold tool that can be used for advanced characterization of polymers. One can easily get a picture worth thousand words with the SEM if the sample is prepared carefully, the right imaging technique and the right signal for detection is pursued. Besides imaging, elemental microanalysis and in-situ experiments, such as wetting or drying can be performed in an SEM. Most polymers present vacuum incompatibility issues, are poor electrical conductors, sensitive to the electron beam and generate little signal, which makes the electron microscopy investigation tedious. We present here a few advanced scanning electron microscopy techniques, which allow for imaging polymers with minimal sample preparation, no chemical modification and no sample coating.

Low voltage SEM (0.5-5 keV)

Room Temperature, High Vacuum

Charge compensation of the sample can be achieved by choosing the right accelerating voltage. At high accelerating voltage the number of electrons (secondary and backscattered) escaping the sample is lower than the number of primary electrons hitting the sample. As the acceleration voltage is decreased the number of escaping secondary electrons increases due to the smaller escape distance. At a certain acceleration voltage an equilibrium between primary electrons hitting the sample and electrons escaping is achieved. This equilibrium accelerating voltage can be found experimentally and used when imaging the sample without coating.

Cryo (-130 to -140 °C), High Vacuum

For the cryo SEM the sample is cooled rapidly (10⁵ K/s) to liquid nitrogen temperature in order to transform the water content in to amorphous ice. After the cooling step, the sample is kept at temperatures below the glass transition temperature of water. In order to get a fresh surface the sample can be either fractured or sublimated at -90°C and then imaged at (-130 to -140°C) with an incident electron beam accelerated to the equilibrium voltage.

Scanning Transmission Electron Microscopy (STEM) in SEM

When the sample is smaller than the interaction volume most of the scattering will occur in the forward direction. Therefore a STEM detector, which detects the transmitted electrons, can be used.

Energy Dispersive X-rays (EDS)

When the incident electron interacts with the sample, if the energy allows, a characteristic X-ray photon can be emitted by the sample. If the characteristic X-rays are detected the elements present in the sample can be identified.

Variable Pressure (VP) SEM (Low and Environmental SEM)

In the VP SEM an auxiliary gas, such as water, is used in order to ad the SEM of poor electrical conductors such as polymers. The gas aids with the charge dissipation and with the signal amplification.

The VP SEM can be also used for in-situ experiments, such as drying, wetting, electron beam deposition and etching.

Acknowledgments

We would like to acknowledge:
Paolo Marizza from DTU Nanotech, Department Of Micro and Nanotechnology for the hydrogels and the microcontainers samples.
Agnieszka Mech-Dorosz from DTU Nanotech, Department Of Micro and Nanotechnology for the hydrogel samples.
Malgorzata Kostrewska from DTU Chemical Engineering, DPC for the microcapsules samples.
Further information ramona.mateiu@cen.dtu.dk