Objective and Perceptual Evaluation of a Virtual Sound Environment System.

Cubick, Jens; Dau, Torsten

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Objective and Perceptual Evaluation of a Virtual Sound Environment System

Jens Cubick, Torsten Dau
Hearing Systems group, Department of Electrical Engineering, Technical University of Denmark

Introduction
Hearing aid (HA) users often have difficulties following a conversation in challenging listening situations involving multiple talkers, background noise, and reverberation. To improve their listening performance, the algorithms in modern HAs have become increasingly complex. Yet, most HA testing is still performed in unrealistically simple setups.

In this study [1], speech reception thresholds (SRTs) were measured in a real classroom and its virtual counterpart auralized in the ‘Spacelab’ (see Fig. 1) to investigate, how well results obtained in a complex Virtual Sound Environment (VSE) translate to the corresponding real situation.

Method
Auralization technique
- Simulation of the classroom (Room 019, V=180m3, T30 = 0.5s) in ODEON
- Calibration of the room model to the measured reverberation time T30 and clarity C30, (ISO 3382), see Fig. 4.
- Auralization of the results with a spherical 29 loudspeaker array in the ‘Spacelab’ using the LoRA toolbox [2], see Fig. 2.
- Rendering method: Higher Order Ambisonics (HOA) or Nearest Loudspeaker (NLS), where each reflection is mapped to a single loudspeaker.

Listening experiments
- Dantale II test [3] with 8 normal hearing, native Danish speaking listeners.
- Receiver-in-the-ear HAs with power domes providing flat, linear gain of 15 dB.
- Omnidirectional (Omn) microphone and static beamformer (BF).

Discussion – Physical Evaluation
- LoRA processing transparent with respect to T30 and C30.
- IACC lower in VSE than in Room 019, i.e., more diffuse sound field in the VSE.
- Reduced dynamic range of the directivity pattern over azimuth angle in VSE compared to Room 019, indicating a more diffuse sound field in the VSE.
- Effectiveness of the beamformer reduced in the VSE due to the higher diffuseness.

Results – Physical evaluation
Room acoustic parameters (ISO 3382)

Results – Listening experiments

VSE – HA setting

Discussion – Listening experiments
- SRTs higher in the VSE than in Room 019, probably due to higher diffuseness compared to Room 019.
- However, the SRT benefit from BF overlap omnidirectional microphone is similar in the VSE and Room 019.
- Higher SRTs with HOA compared to NLS coding, consistent with [4].
- Standard deviations are smaller in the VSE than in Room 019, consistent with the subjective description of the listeners.
- With NLS, SRT differences between 2m and 5m are almost identical to Room 019. Generally: NLS results are closer to reality.
- NLS preserves the dependence of the SRT on the target source distance.

Conclusion
The tested VSE seems to capture many acoustical features of a real environment (an existing room) that might be crucial for speech intelligibility, even though the resulting sound field in the VSE seems to be slightly more diffuse. The SRTs measured in the VSE were higher than those in Room 019. However, the differential outcome measure, BF benefit, was the same in the simulated and real environment.

VSEs could provide a powerful tool for testing HA algorithms, since very different acoustic conditions can be tested flexibly in a controlled and repeatable way. Array microphone recordings and screen projection could provide additional flexibility, for example, in the case of dynamic acoustic scenes.

References