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Abstract

TMB is an open source R package that enables quick implementation of complex
nonlinear random effects (latent variable) models in a manner similar to the established
AD Model Builder package (ADMB, http://admb-project.org/; Fournier et al. 2011).
In addition, it offers easy access to parallel computations. The user defines the joint
likelihood for the data and the random effects as a C++ template function, while all
the other operations are done in R; e.g., reading in the data. The package evaluates
and maximizes the Laplace approximation of the marginal likelihood where the random
effects are automatically integrated out. This approximation, and its derivatives, are
obtained using automatic differentiation (up to order three) of the joint likelihood. The
computations are designed to be fast for problems with many random effects (≈ 106)
and parameters (≈ 103). Computation times using ADMB and TMB are compared on a
suite of examples ranging from simple models to large spatial models where the random
effects are a Gaussian random field. Speedups ranging from 1.5 to about 100 are obtained
with increasing gains for large problems. The package and examples are available at
http://tmb-project.org/.
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1. Introduction

Calculation of derivatives plays an important role in computational statistics. One classic
application is optimizing an objective function; e.g., maximum likelihood estimation. Given
a computer algorithm that computes a function, automatic differentiation (AD; Griewank
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2 TMB: Automatic Differentiation and Laplace Approximation

and Walther 2008) is a technique that computes derivatives of the function. This frees the
statistician from the task of writing, testing, and maintaining derivative code. This tech-
nique is gradually finding its way into statistical software; e.g., in the C++ packages ADMB
(Fournier et al. 2011), Stan (Stan Development Team 2013) and Ceres Solver (Agarwal and
Mierle 2013). These packages implement AD from first principles, rather than using one of
the general purpose AD packages that are available for major programming languages such
as Fortran, C++, Python, and MATLAB (Bücker and Hovland 2014). The template model
builder R (R Core Team 2016) package TMB (Kristensen 2016) uses CppAD (Bell 2005) to
evaluate first, second, and possibly third order derivatives of a user function written in C++.
Maximization of the likelihood, or a Laplace approximation for the marginal likelihood, is
performed using conventional R optimization routines. The numerical linear algebra library
Eigen (Guennebaud, Jacob, and others 2010) is used for C++ vector and matrix operations.
Seamless integration of CppAD and Eigen is made possible through the use of C++ templates.
First order derivatives are usually sufficient for maximum likelihood estimation and for hybrid
MCMC sampling; e.g., the Stan package which provides both only uses first order derivatives
(Stan Development Team 2013). Higher order derivatives calculated using AD greatly fa-
cilitate optimization of the Laplace approximation for the marginal likelihood in complex
models with random effects; e.g., Skaug and Fournier (2006). This approach, implemented
in the ADMB and TMB packages, has been used to fit simple random effects models as well
as models containing Gaussian Markov random fields (GMRF). In this paper, we compare
computation times between these two packages for a range of random effects models.
Many statisticians are unfamiliar with AD and for those we recommend reading Sections 2.1
and 2.2 of Fournier et al. (2011). The ADMB package is rapidly gaining new users due to its
superiority with respect to optimization speed and robustness (Bolker et al. 2013) compared
to, e.g., WinBUGS (Spiegelhalter, Thomas, Best, and Lunn 2003). The TMB package is built
around the same principles, but rather than being coded more or less from scratch, it combines
several existing high-performance libraries, to be specific, CppAD for automatic differentiation
in C++, Matrix (Bates and Maechler 2015) for sparse and dense matrix calculations in R,
Eigen for sparse and dense matrix calculations in C++, and OpenMP for parallelization in
C++ and Fortran. Using these packages yields better performance and a simpler code-base
making TMB easy to maintain.
The conditional independence structure in state-space models and GMRFs yields a sparse pre-
cision matrix for the joint distribution of the data and the random effects. It is well known
that, when this precision matrix is sparse, it is possible to perform the Laplace approximation
for models with a very large number of random effects; e.g., INLA (Rue, Martino, and Chopin
2009). The INLA package (http://www.r-inla.org/) restricts the models to cases where
the sparseness structure is known a priori and models can be written in one line of R code. In
contrast ADMB requires manual identification of conditional independent likelihood contri-
butions, but is not restricted to any special model class. The TMB package can fit the same
models as ADMB, but is better equipped to take maximal advantage of sparseness structure.
It uses an algorithm to automatically determine the sparsity structure. Furthermore, in situ-
ations where the likelihood can be factored, it enables parallelization using OpenMP (Dagum
and Menon 1998). It also allows parallelization through BLAS (Dongarra, Croz, Hammarling,
and Duff 1990) during Cholesky factorization of large sparse precision matrices. (Note that
the BLAS library is written in Fortran.)
C++ templates treat variable types as parameters. This obtains the advantages of loose

http://www.r-inla.org/
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typing because one code base can work on multiple types. It also obtains the advantage of
strong typing because types are checked at compile time and the code is optimized for the
particular type. CppAD’s use of templates enables derivatives calculations to be recorded
and define other functions that can then be differentiated. Eigen’s use of templates enables
matrix calculations where corresponding scalar types can do automatic differentiation. These
features are important in the implementation and use of TMB.
The rest of this paper is organized as follows: Section 2 is a review of the Laplace approx-
imation for random effects models. Section 3 is a review of automatic differentiation as it
applies to this paper. Section 4 describes how TMB is implemented. Section 5 describes the
package from a user’s perspective. Section 6 compares its performance with that of ADMB
for a range of models where the number of parameters is between 1 and 16 and the number
of random effects is between 40 and 40, 000. Section 7 contains a discussion and conclusion.

2. The Laplace approximation
The statistical framework in this section closely follows that of Skaug and Fournier (2006).
Let f(u, θ) denote the negative joint log-likelihood of the data and the random effects. This
depends on the unknown random effects u ∈ Rn and parameters θ ∈ Rm. The data, be
it continuous or discrete, is not made explicit here because it is a known constant for the
analysis in this section. The function f(u, θ) is provided by the TMB user in the form of
C++ source code. The range of applications is large, encompassing all random effects models
for which the Laplace approximation is appropriate.
The TMB package implements maximum likelihood estimation and uncertainty calculations
for θ and u. It does this in an efficient manner and with minimal effort on the part of the
user. The maximum likelihood estimate for θ maximizes

L(θ) =
∫
Rn

exp(−f(u, θ)) du

w.r.t. θ. Note that the random effects u have been integrated out and the marginal likelihood
L(θ) is the likelihood of the data as a function of just the parameters. We use û(θ) to denote
the minimizer of f(u, θ) w.r.t. u; i.e.,

û(θ) = arg min
u
f(u, θ) . (1)

We use H(θ) to denote the Hessian of f(u, θ) w.r.t. u and evaluated at û(θ); i.e.,

H(θ) = f ′′uu(û(θ), θ) . (2)

The Laplace approximation for the marginal likelihood L(θ) is

L∗(θ) =
√

2πn det(H(θ))−
1
2 exp(−f(û, θ)) . (3)

This approximation is widely applicable including models ranging from non-linear mixed
effects models to complex space-time models. Certain regularity conditions on the joint
negative log-likelihood function are required; e.g., the minimizer of f(u, θ) w.r.t. u is unique.
These conditions are not discussed in this paper.
Models without random effects (n = 0), and models for which the random effects must be
integrated out using classical numerical quadratures, are outside the focus of this paper.
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Our estimate of θ minimizes the negative log of the Laplace approximation; i.e.,

− logL∗(θ) = −n log
√

2π + 1
2 log det(H(θ)) + f(û, θ). (4)

This objective and its derivatives are required so that we can apply standard nonlinear op-
timization algorithms (e.g., BFGS) to optimize the objective and obtain our estimate for θ.
Uncertainty of the estimate θ̂, or any differentiable function of the estimate φ(θ̂), is obtained
by the δ-method:

VAR(φ(θ̂)) = −φ′θ(θ̂)
(
∇2 logL∗(θ̂)

)−1
φ′θ(θ̂)>. (5)

A generalized version of this formula is used to include cases where φ also depends on the ran-
dom effects, i.e. φ(u, θ), (Skaug and Fournier 2006; Kass and Steffey 1989). These uncertainty
calculations also require derivatives of (4). However, derivatives are not straight-forward to
obtain using automatic differentiation in this context. Firstly, because û depends on θ in-
directly as the solution of an inner optimization problem; see (1). Secondly, equation (4)
involves a log determinant, which is found through a Cholesky decomposition. A naive appli-
cation of AD, that ignores sparsity, would tape on the order of n3 floating point operations.
While some AD packages would not record the zero multiplies and adds, they would still take
time to detect these cases. TMB handles these challenges using state-of-the-art techniques
and software packages. In the next section, we review its use of the CppAD package for
automatic differentiation.

3. AD and CppAD
Given a computer algorithm that defines a function, automatic differentiation (AD) can be
used to compute derivatives of the function. We only give a brief overview of AD, and refer
the reader to Griewank and Walther (2008) for a more in-depth discussion. There are two
different approaches to AD: “source transformation” and “operator overloading”. In source
transformation; e.g., the package TAPENADE (Hascoet and Pascual 2004), a preprocessor
generates derivative code that is compiled together with the original program. This approach
has the advantage that all the calculations are done in compiler native floating point type
(e.g., double-precision) which tends to be faster than AD floating point types. In addition
the compiler can apply its suite of optimization tricks to the derivative code. Hence source
transformation tends to yield the best run time performance, both in terms of speed and
memory use.
In the operator overloading approach to AD, floating point operators and elementary func-
tions are overloaded using types that perform AD techniques at run time. This approach is
easier to implement and to use because it is not necessary to compile and interface to extra
automatically generated source code each time an algorithm changes. ADOL-C (Walther and
Griewank 2012) and CppAD (Bell 2005) implement this approach using the operator over-
loading features of C++. Because TMB uses CppAD it follows that its derivative calculations
are based on the operator overloading approach.
During evaluation of a user’s algorithm, CppAD builds a representation of the corresponding
function, often referred to as a “tape” or the “computational graph”. Figure 1 shows a
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Figure 1: CppAD tape T1 for f(ξ1, . . . , ξ8) = ξ2
1 +

∑8
i=2(ξi − ξi−1)2 . Nodes “Inv 1”–“Inv

8” correspond to ξ1, . . . , ξ8 and node “CSum 24” corresponds to f(ξ1, . . . , ξ8). Node labels
indicate the elementary operations, numbering indicates the order in these operations are
evaluated, arrows point from operation arguments to results, double arrows correspond to
the square operator xˆ2 which is implemented as x*x.

graphical representation of T1, the tape for the example function f : R8 → R, defined by

f(ξ1, . . . , ξ8) = ξ2
1 +

8∑
i=2

(ξi − ξi−1)2 .

Each node corresponds to a variable, its name is the operation that computes its value, and
its number identifies it in the list of all the variables. The initial nodes are the independent
variables ξ1, . . . ξ8. The final node is the dependent variable corresponding to the function
value. There are two main AD algorithms known as the “forward” and “reverse” modes.
Forward mode starts with the independent variables and calculates values in the direction of
the arrows. Reverse mode does its calculations in the opposite direction.
Because f is a scalar valued function, we can calculate its derivatives with one forward and
one reverse pass through the computational graph in Figure 1: Starting with the value for
the independent variables nodes 1 through 8, the forward pass calculates the function value
for all the other nodes.
The reverse pass, loops through the nodes in the opposite direction. It recursively updates
the k’th node’s partial derivative ∂ξ24/∂ξk, given the partials of higher nodes ∂ξ24/∂ξi, for
i = k + 1, ..., 24. For instance, to update the partial derivative of node k = 5, the chain rule
is applied along the outgoing edges of node 5; i.e.,

∂ξ24
∂ξ5

= ∂ξ24
∂ξ16

∂ξ16
∂ξ5

+ ∂ξ24
∂ξ18

∂ξ18
∂ξ5

The partials of the final node, ∂ξ24/∂ξ16 and ∂ξ24/∂ξ18, are available from previous calcula-
tions because 16 and 18 are greater than 5. The partials along the outgoing arrows, ∂ξ16/∂ξ5
and ∂ξ18/∂ξ5, are derivatives of elementary operations. In this case, the elementary operation
is subtraction and these partials are plus and minus one. (For some elementary operations;
e.g., multiplication, the values computed by the forward sweep are needed to compute the
partials of the elementary operation.) On completion of the reverse mode loop, the total
derivative of ξ24 w.r.t. the independent variables is available as ∂ξ24/∂ξ1,..., ∂ξ24/∂ξ8.
For a scalar valued f , evaluation of its derivative using reverse mode is surprisingly inex-
pensive. The number of floating point operations is less than 4 times that for evaluating
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Figure 2: CppAD tape T2 for f ′(ξ), when f(ξ) is defined as in Figure 1. For example,
node 26 corresponds to the partial of f w.r.t. ξ3; i.e., f ′3(ξ) = 2(ξ3 − ξ2) − 2(ξ4 − ξ3). After
a zero order forward sweep, f ′(ξ) is contained in nodes marked with dashed ellipses. Hessian
columns of f are found using first order reverse sweeps of T2. For example, to find the 3rd
Hessian column it is sufficient to traverse the sub-graph marked in gray; i.e., the nodes that
affect the value of node 26.

f itself (Griewank and Walther 2008). We refer to this as the “cheap gradient principle”.
This cost is proportional to the number of nodes in T1; i.e., Figure 1. (The actual result
is for a computational graph where there is only one or two arrows into each node. In T1,
CppAD combined multiple additions into the final node number 24.) This result does not
carry over from scalar valued functions to vector valued functions g(x). It does apply to the
scalar-valued inner product w>g(x), where w is a vector in the range space for g. CppAD
has provision for using reverse mode to calculate the derivative of w>g(x) given a range space
direction w and a tape for g(x).
CppAD was chosen for AD calculations in TMB because it provides two mechanisms for
calculating higher order derivatives. One uses forward and reverse mode of any order. The
other is its ability to tape functions that are defined in terms of derivatives and then apply
forward and reverse mode to compute derivatives of these functions. We were able to try
many different derivative schemes and choose the one that was fastest in our context. To this
end, it is useful to tape the reverse mode calculation of f ′ and thereby create the tape T2 in
Figure 2. This provides two different ways to evaluate f ′. The new alternative is to apply a
zero order forward sweep on T2; i.e., starting with values for nodes 1–8, sequentially evaluate
nodes 9-29. On completion the eight components of the vector f ′ are found in the dashed
nodes of the graph. If we do a reverse sweep on T2 in the direction w, we get

∂ξ[w>f ′(ξ)] =
( 8∑
i=1

wi
∂2

∂ξ1∂ξi
f(x) , . . . ,

8∑
i=1

wi
∂2

∂ξ8∂ξi
f(x)

)
(6)

In Section 4 we shall calculate up to third order derivatives using these techniques.
CppAD does some of its optimization during the taping procedure; e.g., constant expressions
are reduced to a single value before being taped. Other optimizations; e.g., removing code
that does not affect the dependent variables, can be performed using an option to optimize
the tape. This brings the performance of CppAD closer to the source transformation AD
tools, especially in cases where the optimized tape is evaluated a large number of times (as is
the case with TMB).
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4. Software implementation
TMB calculates estimates of both parameters and random effects using the Laplace approx-
imation (3) for the likelihood. The user provides a C++ function f(u, θ) that computes the
joint likelihood as a function of the parameters θ and the random effects u; see Section 5
for more details. This function, referred to as the “user template” below, defines the user’s
statistical model using a standard structure that is expected by the package. Its floating
point type is a template parameter so that it can be used with multiple CppAD types. Hence
there are two meanings of the use of T (Template) in the package name TMB.
An overview of the package design is shown in Figure 3. Evaluation of the objective− logL∗(θ)
and its derivatives, is performed in R; see equation (4). TMB performs the Laplace approx-
imation with use of CHOLMOD, natively available in R through the Matrix package, and
optionally linking to BLAS. Sub-expressions, such as û(θ) and H(θ), are evaluated in C++.
These sub-expressions are returned as R objects, and the interactive nature of R allows the
user to easily inspect them. This is important during a model development stage.
Interfaces to the various parts of CppAD constitute a large part of the R code. During an
initial phase of program execution the following CppAD tapes are created:

T1 Tape of f(u, θ) : Rm+n → R, generated from user program. Graph size proportional to
flop count of user template function.

T2 Tape of f ′(u, θ) : Rm+n → Rm+n, generated from T1 as described in Figure 2. Graph
size is at most 4 times the size of T1.

T3 Tape of f ′′uu(u, θ) : Rm+n → R`, the l non-zero entries in the lower triangle of H(θ).
Prior to T3’s construction, the sparsity pattern of H(θ) is calculated by analyzing the
dependency structure of T2.

Tapes T1–T3 correspond to Codes 1–3 in Table 1 of Skaug and Fournier (2006). These
tapes are computed only once and are subsequently held in memory. The corresponding data
structures are part of the R environment and are managed by the R garbage collector just
like any other objects created from the R command line.

R

TMB

User Template

Matrix

TMB++ Eigen

CppAD

CHOLMOD BLAS

Figure 3: TMB package design: module R is the the top level controlling user code, TMB
is the part of TMB that is written in R, Matrix is an R sparse matrix package, CHOLMOD
is a C sparse Cholesky factorization routine, BLAS is a Fortran tuned set of basic linear
algebra routines, User Template is the user’s joint likelihood in C++, TMB++ is the package
components in C++, Eigen is a C++ matrix algebra library, CppAD is a C++ AD package.
Arrows indicate package inclusions.
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4.1. Inverse subset algorithm

In this section we describe how the tapes T1–T3 are used to calculate the derivative of the
objective with respect to the parameters. Define h : Rn+m → R by

h(u, θ) = −n2 log 2π + 1
2 log det f ′′uu(u, θ) + f(u, θ) .

It follows that the objective − logL∗(θ) is equal to h(û(θ), θ). Furthermore, the function û(θ)
satisfies the equations

f ′u(û(θ), θ) = 0
û′(θ) = −f ′′uu(û(θ), θ)−1f ′′uθ(û(θ), θ).

The derivative of the objective w.r.t. θ is

d

dθ
h(û(θ), θ) = h′θ(û(θ), θ)− h′u(û(θ), θ)f ′′uu(û(θ), θ)−1f ′′uθ(û(θ), θ). (7)

To simplify the notation, we express (u, θ) as a single vector ξ ∈ Rn+m. The first step is to
evaluate

h′ξ(ξ) = f ′ξ(ξ) + d

dξ

1
2 log det f ′′uu(ξ).

The term f ′ξ(ξ) is calculated using a first order reverse sweep on T1. The derivative of the
log-determinant is calculated using the well known rule

∂

∂ξi

(1
2 log det f ′′uu(ξ)

)
= 1

2tr
(
f ′′uu(ξ)−1 ∂

∂ξi
f ′′uu(ξ)

)
. (8)

The trace of a product of symmetric matrices tr(AB) is equal to the sum of the entries of
the pointwise product A � B. Thus, computing the right hand side of equation (8) only
requires the elements of f ′′uu(ξ)−1 that correspond to non-zero entries in the sparsity pattern
for ∂ξ(i)f ′′uu(ξ). The inverse subset algorithm transforms the sparse Cholesky factor L to the
inverse (LL>)−1 on the sparseness pattern of LL>; e.g., Rue (2005). Let w ∈ R` denote the
elements of f ′′uu(ξ)−1 that correspond to non-zeros in the lower triangle of f ′′uu(ξ). We can
compute the partial (8), for all i, through a single first order reverse sweep of tape T3 in
range direction w.
Having evaluated h′(ξ) we turn to the remaining terms in equation (7). A sparse matrix-vector
solve is used to compute

v = h′u(û(θ), θ)f ′′uu(û(θ), θ)−1 .

A reverse mode sweep of tape T2 in range direction w = (v, 0) is used to compute

d

dξ
[vf ′u(û(θ), θ)] = [vf ′′uu(û(θ), θ), vf ′′uθ(û(θ), θ)] .

This yield the final term needed in equation (7)

h′u(û(θ), θ)f ′′uu(û(θ), θ)−1f ′′uθ(û(θ), θ) = vf ′′uθ(û(θ), θ) .

Note that the term vf ′′uu(û(θ), θ) is not used by the method above. It is necessary to include
u in the independent variables for this calculation so that the dependence of vf ′′uθ(û(θ), θ) on
the value of û(θ) can be included.
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Laplace: h(ξ̂) Gradient: (d/dθ)h(ξ̂)
L1: min f(u, θ) w.r.t. u ξ̂ = (û, θ)
L2: order 0 forward T1 f(ξ̂) G1: order 1 reverse T1 f ′(ξ̂)
L3: order 0 forward T3 f ′′uu(ξ̂) G2: order 1 reverse T3 ∂ξf

′′
uu(ξ̂)

L4: sparse Cholesky LL> = f ′′uu(ξ̂) G3: inverse subset ∂ξ log det f ′′uu(ξ̂)
G4: sparse solve v = h′u(ξ̂)fuu(ξ̂)−1

G5: order 0 forward T2 f ′(ξ̂)
G6: order 1 reverse T2 vf ′′u,θ(ξ̂)

Table 1: Computational steps for the Laplace approximation and its gradient in TMB.

The computational steps for evaluating the Laplace approximation and its gradient are sum-
marized in Table 1. Note that the G1 calculation of f ′(ξ̂) could in principle be avoided by
reusing the result of G5. However, as the following work calculation shows, the overall com-
putational approach is efficient. The work required to evaluate the Laplace approximation
is

work (Laplace) = work (L1+L2+L3+L4) ,

while the the work of the entire table is

work (Laplace+Gradient) = work (L1+L2+L3+L4+G1+G2+G3+G4+G5+G6) .

It follows from the cheap gradient principle that,

work (Laplace+Gradient) ≤ work (L1+L4+G3+G4) + 4 · work (L2+L3+G5) .

Given the sparse Cholesky factorization, the additional work required for the inverse subset
algorithm is equal to the work of the sparse Cholesky factorization (Campbell and Davis
1995). The additional work required for the sparse solve is less than or equal the work for
the sparse Cholesky factorization. We conclude that

work (L4+G3+G4) ≤ 3 · work (L4) ,
work (Laplace+Gradient) ≤ work (L1) + 4 · work (L2+L3+L4+G5) .

Under the mild assumption that solving the inner problem, L1, requires at least two evalua-
tions of f ′(ξ), i.e., 2 · work (G5) ≤ work (L1), we conclude

work (Laplace+Gradient) ≤ 4 · work (L1+L2+L3+L4) = 4 · work (Laplace) .

Hence, the cheap gradient principle is preserved for the gradient of Laplace approximation.
Besides from efficient gradient calculations, the inverse subset algorithm is used by TMB to
calculate marginal standard deviations of random effects and parameters using the generalized
delta method (Kass and Steffey 1989), which is also used in ADMB.

4.2. Automatic sparsity detection

TMB can operate on very high dimensional problems provided that the Hessian (2) is a sparse
matrix. In this section, we illustrate how the sparsity structure of H is automatically detected
and comment on the computational cost of this detection.
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Consider the negative joint log-likelihood for a one dimensional random walk with N(0, 1
2)

innovations and no measurements:

f(u, θ) = u2
0 +

7∑
i=1

(ui − ui−1)2 .

The bandwidth of the Hessian f ′′uu(u, θ) is three. Below is a user template implementation
of this negative joint log-likelihood. (Refer to Section 5 for details about the structure of a
TMB user template.)

#include <TMB.hpp>
template<class Type>
Type objective_function<Type>::operator() ()
{
PARAMETER_VECTOR(u);
Type f = pow(u[0], 2);
for(int i = 1; i < u.size(); i++) f += pow(u[i] - u[i-1], 2);
return f;

}

Figure 1 shows a tape T1 corresponding to this user template. The nodes are numbered (1
to 24) in the order they are processed during a forward sweep. CppAD is used to record the
operations that start with the independent variables nodes 1 to 8 of T1, perform a zero order
forward sweep and then a first order reverse sweep, and result in the derivative of f (in nodes
1 to 8 of T1). This recording is then processed by CppAD’s tape optimization procedure and
the result is tape T2 (Figure 2). In this tape, the input values are numbered 1 to 8 (as in T1)
and the output values are the dashed nodes in the last row together with node 16.
If we take w in equation (6) to be the kth unit vector, a reverse sweep for T2 will yield the
kth column of the Hessian H of f . However, such full sweeps are far from optimal. Instead,
we find the subgraph that affects the kth gradient component, and perform the reverse sweep
only on the subgraph. The example k = 3 is shown in Fig 2 where the dependencies of node
26 (3rd gradient component) are marked with gray. TMB determines the subgraph using a
breadth-first search from the kth node followed by a standard sort. This gives a computational
complexity of O(nk lognk) where nk is the size of the kth subgraph.
A further reduction would be possible by noting that the sorting operation can be avoided:
The reverse sweep need not be performed in the order of the original graph. A topological
sort is sufficient, in principle reducing the computational complexity to O(nk). For a general
quadratic form the computational complexity can in theory become as low as proportional to
the number of non-zeros of the Hessian. At worst, for a dense Hessian, this gives a complexity
of O(n2) (though the current implementation has O(n2 logn)). In conclusion, the cost of the
sparse Hessian algorithm is small compared to e.g., the Cholesky factorization. Also recall
that the Hessian sparseness detection only needs to be performed once for a given estimation
problem.

4.3. Parallel Cholesky through BLAS

For models with a large number of random effects, the most demanding part of the calculations
is the sparse Cholesky factorization and the inverse subset algorithm; e.g., when the random
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effects are multi-dimensional Gaussian Markov Random Fields (see Section 5). For such mod-
els the work of the Cholesky factorization is much larger than the work required to build the
Hessian matrix f ′′uu(ξ) and to perform the AD calculations. The TMB Cholesky factorization
is performed by CHOLMOD (Chen, Davis, Hager, and Rajamanickam 2008), a supernodal
method that uses the BLAS. Computational demanding models with large numbers of ran-
dom effects can be accelerated by using parallel and tuned BLAS with the R installation;
e.g., MKL (Intel 2007). The use of parallel BLAS does not improve performance for models
where the Cholesky factor is very sparse (e.g., small-bandwidth banded Hessians), because
the BLAS operations are then performed on scalars, or low dimensional dense matrices.

4.4. Parallel user templates using OpenMP

For some models the evaluation of f(ξ) is the most time consuming part of the calculations.
If the joint likelihood corresponds to independent random variables, f(ξ) is a result of sum-
mation; i.e.,

f(ξ) =
K∑
k=1

fk(ξ).

For example, in the case of a state-space model, fk(ξ) could be the negative log-likelihood
contribution of a state transition for the kth time-step. Assume for simplicity that two
computational cores are available. We could split the sum into even and odd values of k; i.e.,

f(ξ) = feven(ξ) + fodd(ξ) .

We could use any other split such that the work of the two terms are approximately equal.
All AD calculations can be performed on feven(ξ) and fodd(ξ) separately in parallel using
OpenMP. This includes construction of the tapes T1, T2, T3, sparseness detection, and
subsequent evaluation of these tapes. The parallelization targets all computational steps
of Table 1 except L4, G3 and G4. As an example, consider the tape T1 in Figure 1; i.e.,
tape T1 for the simple random walk example. In the two core case this tape would be split
as shown in Figure 4. In general for any number of cores, if the user template includes
parallel_accumulator<Type> f(this);, TMB automatically splits the summation using
f += and f -= and computes the sum components in parallel; see examples in the results
section.

5. Using the TMB package
Using the TMB package involves two steps that correspond to the User Template and R boxes
in Figure 3. The User Template defines the negative joint log-likelihood using specialized
macros that pass the parameters, random effects, and data from R. The R box typically
prepares data and initial values, links the user template, invokes the optimization, and post
processes the results returned by the TMB box. The example below illustrates this process.
Consider the “theta logistic” population model of (Wang 2007) and (Pedersen, Berg, Thyge-
sen, Nielsen, and Madsen 2011). This is a state-space model with state equation

ut = ut−1 + r0

(
1−

(exp(ut−1)
K

)ψ)
+ et,
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(a)

CSum 16

Inv 1

Mulvv 9

Inv 2

Subvv 10

Inv 3 Inv 4

Subvv 12

Inv 5 Inv 6

Subvv 14

Inv 7 Inv 8

Mulvv 11 Mulvv 13 Mulvv 15

(b)

CSum 17

Inv 1

Subvv 9

Inv 2 Inv 3

Subvv 11

Inv 4 Inv 5

Subvv 13

Inv 6 Inv 7

Subvv 15

Inv 8

Mulvv 10 Mulvv 12 Mulvv 14 Mulvv 16

Figure 4: Illustration of automatic parallelization. After change of return type to
parallel_accumulator the tape of Figure 1 is split such that thread 1 accumulates the
“even” terms and thereby generates the tape (a) and thread 2 accumulates the “odd” terms
thereby generating the tape (b). The sum of node 16 (a) and node 17 (b) gives the same
result as node 24 of Figure 1. All further AD are processed independently by the threads
including sparsity detection and Hessian calculations. TMB glues the results together from
the individual threads.

and observation equation

yt = ut + vt,

where et ∼ N(0, Q), vt ∼ N(0, R) and t ∈ {0, ..., n − 1}. All of the state values u0, . . . , un−1
are random effects and integrated out of the likelihood. A uniform prior is implicitly assigned
to u0. The parameter vector is θ = (log(r0), log(ψ), log(K), log(Q), log(R)). The joint density
for y and u is

(
n−1∏
t=1

pθ(ut|ut−1)
)(

n−1∏
t=0

pθ(yt|yt)
)
.
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The negative joint log-likelihood is given by

f(u, θ) = −
n−1∑
t=1

log pθ(ut|ut−1)−
n−1∑
t=0

log pθ(yt|ut)

= −
n−1∑
t=1

log pθ(et)−
n−1∑
t=0

log pθ(vt).

The user template for this negative joint log-likelihood (the file named thetalog.cpp at
https://github.com/kaskr/adcomp/tree/master/tmb_examples) is

#include <TMB.hpp>
template<class Type>
Type objective_function<Type>::operator() ()
{

DATA_VECTOR(y); // data
PARAMETER_VECTOR(u); // random effects
// parameters
PARAMETER(logr0); Type r0 = exp(logr0);
PARAMETER(logpsi); Type psi = exp(logpsi);
PARAMETER(logK); Type K = exp(logK);
PARAMETER(logQ); Type Q = exp(logQ);
PARAMETER(logR); Type R = exp(logR);
int n = y.size(); // number of time points
Type f = 0; // initialize summation
for(int t = 1; t < n; t++){ // start at t = 1
Type mean = u[t-1] + r0 * (1.0 - pow(exp(u[t-1]) / K, psi));
f -= dnorm(u[t], mean, sqrt(Q), true); // e_t

}
for(int t = 0; t < n; t++){ // start at t = 0
f -= dnorm(y[t], u[t], sqrt(R), true); // v_t

}
return f;

}

There are a few important things to notice. The first four lines, and the last line, are standard
and should be the same for most models. The first line includes the TMB specific macros and
functions, including dependencies such as CppAD and Eigen. The following three lines are the
syntax for starting a function template where Type is a template parameter that the compiler
replaces by an AD type that is used for numerical computations. The line DATA_VECTOR(y)
declares the vector y to be the same as data$y in the R session (included below). The line
PARAMETER_VECTOR(u) declares the vector u to be the same as parameters$u in the R session.
The line PARAMETER(logr0) declares the scalar logr0 to be the same as parameters$logr0
in the R session. The other scalar parameters are declared in a similar manner. Note that
the user template does not distinguish between the parameters and random effects and codes
them both as parameters. The density for a normal distribution is provided by the function
dnorm, which simplifies the code. Having specified the user template it can be compiled,
linked, evaluated, and optimized from within R:

https://github.com/kaskr/adcomp/tree/master/tmb_examples
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R> y <- scan("thetalog.dat", skip = 3, quiet = TRUE)
R> library("TMB")
R> compile("thetalog.cpp")
R> dyn.load(dynlib("thetalog"))
R> data <- list(y = y)
R> parameters <- list(u = data$y * 0, logr0 = 0, logpsi = 0,
+ logK = 6, logQ = 0, logR = 0)
R> obj <- MakeADFun(data, parameters, random = "u", DLL = "thetalog")
R> system.time(opt <- nlminb(obj$par, obj$fn, obj$gr))
R> rep <- sdreport(obj)

The first line uses the standard R function scan to read the data vector y from a file. The
second line loads the TMB package. The next two lines compile and link the user tem-
plate. The line data <- list(y = y) creates a data list for passing to MakeADFun. The
data components in this list must have the same names as the DATA_VECTOR names in the
user template. Similarly a parameter list is created where the components have the same
names as the parameter objects in the user template. The values assigned to the components
of parameter are used as initial values during optimization. The line that begins obj <-
MakeADFun defines the object obj containing the data, parameters and methods that access
the objective function and its derivatives. If any of the parameter components are random
effects, they are assigned to the random argument to MakeADFun. For example, if we had used
random = c("u", "logr0"), logr0 would have also been a random effect (and integrated
out using the Laplace approximation.) The last three lines use the standard R optimizer
nlminb to minimize the Laplace approximation obj$fn aided by the gradient obj$gr and
starting at the point obj$par. The last line generates a standard output report.

6. Case studies
A number of case studies are used to compare run times and accuracy between TMB and
ADMB; see Table 2. These studies span various distribution families, sparseness structures,
and inner problem complexities. Convex inner problems (1) are efficiently handled using
a Newton optimizer, while the non-convex problems generally require more iterations and
specially adapted optimizers.

6.1. Results
The case studies “ar1_4D” and “ar1xar1” would be hard to implement in ADMB because
the sparsity would have to be manually represented instead of automatically detected. In
addition, judging from the speed comparisons presented below, ADMB would take a long time
to complete these cases. Table 3 displays the difference of the results for TMB and ADMB
for all the case studies in Table 2 (excluding “ar1_4D” and “ar1xar1”). These differences
are small enough to be attributed to optimization termination criteria and numerical floating
point roundoff. In addition, both packages were stable w.r.t. the choice of initial value.
Since these packages were coded independently, this represents a validation of both package’s
software implementation of maximum likelihood, the Laplace approximation, and uncertainty
computations.
For each of the case studies (excluding “ar1_4D” and “ar1xar1”) Table 4 displays the speedup
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Name Description dim u dim θ Hessian Convex
mvrw Random walk with multivariate

correlated increments and mea-
surement noise

300 7 block(3)
tridiagonal

yes

nmix Binomial-Poisson mixture model
(Royle 2004)

40 4 block(2) diag-
onal

no

orange_big Orange tree growth example
(Pinheiro and Bates (2000),
Ch.8.2)

5000 5 diagonal yes

sam State-space fish stock assessment
model (Nielsen and Berg 2014)

650 16 banded(33) no

sdv_multi Multivariate SV model (Skaug
and Yu 2013)

2835 12 banded(7) no

socatt Ordinal response model with
random effects

264 10 diagonal no

spatial Spatial Poisson GLMM on a grid,
with exponentially decaying cor-
relation function

100 4 dense yes

thetalog Theta logistic population model
(Pedersen et al. 2011)

200 5 banded(3) yes

ar1_4D Separable GMRF on 4D lattice
with AR1 structure in each direc-
tion and Poisson measurements

4096 1 4D Kronecker yes

ar1xar1 Separable covariance on 2D lat-
tice with AR1 structure in each
direction and Poisson measure-
ments

40000 2 2D Kronecker yes

longlinreg Linear regression with 106 obser-
vations

0 3 – –

Table 2: Description of case studies and problem type, specifically number of random
effects (dim u) and parameters (dim θ), sparseness structure of the Hessian (2) and inner
optimization problem type (convex/not convex). Source code for the examples are available
at https://github.com/kaskr/adcomp/tree/master/tmb_examples.

which is defined as execution time for ADMB divided by the execution time for TMB. In six
out of the nine cases, the speedup is greater than 20; i.e., the new package is more than 20
times faster. We note that ADMB uses a special feature for models similar to the “spatial”
case where the speedup is only 1.5. The speedup is greater than one except for the “longlinreg”
case where it is 0.9. This case does not have random effects, hence the main performance
gain is a result of improved algorithms for the Laplace approximation presented in this paper
and not merely a result of using a different AD library.
TMB supplies an object with functions to evaluate the likelihood function and gradient. It
is therefore easy to compare different optimizers for solving the outer optimization problem.
We used this feature to compare the R optimizers optim and nlminb. For the case studies
in Table 2, the nlminb is more stable and faster than optim. The state-space assessment

https://github.com/kaskr/adcomp/tree/master/tmb_examples
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Example r(θ̂1, θ̂2) r(σ(θ̂1), σ(θ̂2)) r(û1, û2) r(σ(û1), σ(û2))
longlinreg 0.003×10−4 0.000×10−4

mvrw 0.156×10−4 0.077×10−4 0.372×10−4 0.089×10−4

nmix 0.097×10−4 0.121×10−4 0.222×10−4 0.067×10−4

orange_big 0.069×10−4 0.042×10−4 0.026×10−4 1.260×10−4

sam 0.022×10−4 0.167×10−4 0.004×10−4 0.019×10−4

sdv_multi 0.144×10−4 0.089×10−4 0.208×10−4 0.038×10−4

socatt 0.737×10−4 0.092×10−4 0.455×10−4 1.150×10−4

spatial 0.010×10−4 0.160×10−4 0.003×10−4 0.001×10−4

thetalog 0.001×10−4 0.007×10−4 0.000×10−4 0.000×10−4

Table 3: Comparison of TMB estimates (subscript 1) versus ADMB (subscript 2): parameters
θ̂, parameters standard deviation σ(θ̂), random effects û, random effects standard deviation
σ(û), using the distance measure r(x, y) = 2‖x− y‖∞/(‖x‖∞ + ‖y‖∞).

Example Time (TMB) Speedup (TMB vs. ADMB)
longlinreg 11.3 0.9
mvrw 0.3 97.9
nmix 1.2 26.2
orange_big 5.3 51.3
sam 3.1 60.8
sdv_multi 11.8 37.8
socatt 1.6 6.9
spatial 8.3 1.5
thetalog 0.3 22.8

Table 4: Timings for each example in seconds (Time) and speedup factor of TMB relative to
ADMB (Speedup).

sp chol sp inv AD init AD sweep GC Other
ar1_4D 71 22 1 1 3 2
ar1xar1 47 13 9 13 8 10
orange_big 3 4 20 57 6 11
sdv_multi 8 2 3 66 9 13
spatial 1 0 17 71 2 9

Table 5: Percentage of time spent in the following (disjoint) parts of the algorithm: Sparse
Cholesky factorization (sp chol), Inverse subset algorithm (sp inv), Initialization of tapes
including automatic sparseness detection and tape optimization (AD init), AD forward and
reverse mode sweeps (AD sweeps), R Garbage collection (GC) and remaining parts (Other).
All examples were run with standard non-threaded BLAS. Note that the first two columns
can be reduced by switching to a tuned BLAS. The middle two columns can, in certain cases,
be reduced using parallel templates, while the final two columns are impossible to reduce for
a single R instance.

example “sam” was unable to run with optim while no problems where encountered with
nlminb. For virtually all the case studies, the number of iterations required for convergence
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Figure 5: Run time comparison ADMB vs. TMB of multivariate random walk example (mvrw)
for varying number of time steps and block size.

was lower when using nlminb.
Most of the cases tested here have modest run times; to be specific, on the order of seconds.
To compare performance for larger cases the multivariate random walk “mvrw” was modified
in two ways: 1) the number of time steps was successively doubled 4 times; to be specific,
from 100 to 200, 400, 800, and 1600. 2) the size of the state vector was also doubled 3 times;
to be specific the dimension of ut was 3, 6, 12, and 24. The execution time, in seconds T , for
the two packages is plotted in Figure 5, and is a close fit to the relation

TADMB = 159× T 1.3
TMB .

While the parameters of this power-law relationship are problem-specific, this illustrates that
even greater speedups than those reported in Table 4 must be expected for larger problems.
The case studies that took 5 or more seconds to complete were profiled to identify their time
consuming sections; see Table 5. The studies fall in two categories. One category is the cases
that spend over 50% of the time in the sparse Cholesky and inverse subset algorithms, a large
portion of which is spent in the BLAS. This corresponds to the upper branch of Figure 3.
Performance for this category can be improved by linking the R application to an optimized
BLAS library. For example, the “ar1_4D” case spends 93% of its time in these BLAS related
routines. Using the Intel MKL parallel BLAS with 12 computational cores resulted in a factor
10 speedup for this case. Amdal’s law says that the maximum speedup for this case is

6.8 = 1./(.93/12 + (1.0− .93)) .

Amdal’s law does not apply here because the MKL BLAS does other speedups besides par-
allelization.
The other category is the cases that spend over 50% of the time doing AD calculations. This
corresponds to the lower branch of Figure 3. For example, the “sdv_multi” case spends 66%
of the time doing AD sweeps. We were able to speedup this case using the techniques in
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Section 4.4. The speedup with 4 cores was a factor of 2. Amdal’s law says that the maximum
speedup for this case is

1.98 = 1.0/(.66/4 + (1− .66))
which indicates that the AD parallelization was very efficient. To test this speedup for more
cores we increased the size of the problem from three state components at each time to ten.
For this case, using 10 cores, as opposed to 1 core, resulted in a 6 fold speedup. (This case is
not present in Table 5 and we do not do an Amdal’s law calculation for it.)
The cheap gradient principle was checked for all the case studies. The time to evaluate the
Laplace approximation and its gradient obj$gr was measured to be smaller than 2.8 times
the time to evaluate just the Laplace approximation obj$fn. This is within the theoretical
upper bound of 4 calculated at the end of Section 4.1. The factor was as low as 2.1 for “sam”,
the example with the highest number of parameters.

7. Discussion
This paper describes TMB, a fast and flexible R package for fitting models both with and
without random effects. Its design takes advantage of the following high performing and well
maintained software tools: R, CppAD, Eigen, BLAS, and CHOLMOD. The collection of these
existing tools is supplemented with new code that implements the Laplace approximation
and its derivative. A key feature of TMB is that the user do not have to write the code
for the second order derivatives that constitute the Hessian matrix, and hence provides an
“automatic” Laplace approximation. This brings high performance optimization of large
nonlinear latent variable models to the large community of R users. A minimal effort is
required to switch a model already implemented in R to use TMB. Post processing and
plotting can remain unchanged. This ease of use will benefit applied statisticians who struggle
with slow and unstable optimizations, due to imprecise finite approximations of gradients.
The performance of TMB is compared to that of ADMB (Fournier et al. 2011). In a recent
comparative study among general software tools for optimizing nonlinear models, ADMB
came out as the fastest (Bolker et al. 2013). In our case studies, the estimates and their
uncertainties were pratically identical between ADMB and TMB. Since the two programs
are coded independently, this is a strong validation of both tools. In terms of speed, their
performances are similar for models without random effects, however TMB is one to two
orders of magnitude faster for models with random effects. This performance gain increases
as the models get larger. These speed comparisons are for a single core machine.
TMB obtains further speedup when multiple cores are available. Parallel matrix computations
are supported via the BLAS library. The user specified template function can use parallel
computations via OpenMP.
An alternative use of this package is to evaluate, in R, any function written in C++ as a “user
template” (not just negative log-likelihood functions). Furthermore, the derivative of this
function is automatically available. Although this only uses a subset of TMB’s capabilities, it
may be a common use, due to the large number of applications in statistical computing that
requires fast function and derivative evaluation (C++ is a compiled language so its evaluations
are faster).
Another tool that uses the Laplace approximation and sparse matrix calculations (but not
AD) is INLA (Rue et al. 2009). INLA is known to be computationally efficient and it targets
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a quite general class of models where the random effects are Gauss-Markov random fields. It
would be able to handle some, but far from all, of the case studies in Table 2. At the least, the
“mvrw” , “ar1_4D” and “ar1xar1” cases. It would be difficult to implement the non-convex
examples of Table 2 in INLA because their likelihood functions are very tough to differentiate
by hand.
INLA uses quadrature to integrate w.r.t., and obtain a Bayesian estimate of, the parameter
vector θ. This computation time scales exponentially in the number of parameters. On the
other hand, it is trivial for INLA to perform the function evaluations on the quadrature grid
in parallel. Using the parallel R package, TMB could be applied to do the same thing; i.e.,
evaluate the quadrature points in parallel.
In conclusion, TMB provides a fast and general framework for estimation in complex statistical
models to the R community. Its performance is superior to ADMB. TMB is designed in a
modular fashion using modern and high performing software libraries, which ensures that
new advances within any of these can quickly be adopted in TMB, and that testing and
maintenance can be shared among many independent developers.
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