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Abstract. The blockage developing in front of a laterally aligned row of wind turbines and its
impact on power production over a single turbine was analysed using two different numerical
methods. The inflow direction was varied from orthogonal to the row until 45◦, with the turbines
turning into the wind, thereby resembling a wind turbine testing site or row in a wind park.
The numerical methods included computational fluid dynamics (CFD) with an actuator disc
representation of the rotor and a simple vortex method. The forces on the actuator disc were
either derived from airfoil data of a modern wind turbine or set as constant. For all methods
significant changes were found in the developing flow-field with corresponding effects on the
individual power output of the wind turbines. These became more pronounced with increasing
inflow angle and predicted a rise in power of up to 2% for the downstream and -1% for the
upstream turbines. The vortex method agreed with the CFD method on the overall trend, but
its magnitude was lower.

1. Introduction
Whereas the layout of onshore wind farms is mostly governed by the site-specific topology
and planning permits, offshore developments offer more freedom regarding the placement of
individual turbines. To a certain extent this allows for the optimisation of the placement of
turbines, such that the losses in power production incurred by wakes can be minimised. If wake
effects are ignored the potential power deficit could reach up to 35 % relative to isolated turbines
[1]. This marked impact of wakes explains the limited attention that has been paid to blockage
effects on power production in wind farms. The velocity deficit induced upstream by the turbine
is more local and less pronounced, meaning it is commonly assumed to be negligible in the wider
context [2].

For tidal wave turbines, on the other hand, it has been shown experimentally [3]
and numerically [4, 5] that inter turbine blockage significantly increases power production.
Nevertheless for wind turbines these findings are not replicable as they operate in a free domain,
unrestricted by water depth. The upstream blockage in a wind engineering context has recently
been studied in numerous low Reynolds number experiments. For a single turbine Medici et al.



detected a velocity deficit up to three diameters (D) upstream using hot-wire anemometry and
particle image velocimetry [6]. McTavish et al. made use of similar techniques to quantify the
blockage for three laterally aligned, small scale wind turbines, which were placed perpendicular
to the inflow [7]. Reducing the lateral spacing from 2D to 1.5D, they found an increase in power
across all three turbines with the central turbine gaining the most. Summing the increase
in power for all three turbines over an isolated turbine, they found a 6% and 17% power
surge, respectively. The influence of a wind tunnel blockage of 5% on the results was not
determined, nevertheless a vortex particle simulation seemed to confirm the results. That these
variations in power are not limited to simulations and wind tunnel experiments has been shown
by Mitraszewski et al. [8] who analysed the power production along the outer rows of turbines
in the Horns Rev 1 wind farm. Here the power relative to the mean of the whole wind park
varied up to ±5%.

While over an entire wind farm these changes might be minuscule, they might have significant
implications for turbine power curve verification. Test sites such as those in Høvsøre and Østerild
in Denmark align turbines on an axis perpendicular to the prevailing wind direction and by the
widely used IEC standards, allow measurements up to 45◦ to the alignment axis. It is at
least questionable if at these large inflow angles the power variations remain negligible. From
the current literature it is not possible to determine whether blockage impacts the current
power curve evaluations, as all inflows were perpendicular to the line of turbines. Furthermore
most findings are based on low Reynolds number experiments and used extremely small lateral
spacings relative to those in a real setting.

In this paper a set-up loosely related to the DTU test site at Høvsøre is adopted, where the
angle between the inflow and turbine alignment axis is varied. A CFD model in combination
with an actuator disc (AD) is employed to evaluate the power changes over five 5-MW reference
turbines. The turbines have zero yaw error and no boundaries are taken into account. The more
realistic reference turbines are replaced by constantly loaded discs to exclude turbine design
specific effects and allow a comparison with simpler vortex methods. The results are discussed
with respect to the blockage induced flow-field and the wind farm power data.

1.1. Problem definition
The DTU testing site Høvsøre represents an arrangement for which lateral blockage might be
relevant. A loosely related setup consisting of five aligned turbines with a 3D lateral spacing
was therefore adopted (see Figure 1). Taking current measuring procedures as a reference, the
angle between the line of wind turbines and the main wind direction (θ) was varied from 0◦ to
45◦ in 15◦ steps. Note that θ will sometimes be referred to as ’yaw’ in the following passages.
The inflow was set to be uniform at 8 m/s. Furthermore the solution was assumed to be time
invariant.
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Figure 1. Schematic of the wind turbines’ arrangement and reaction to changing inflow
directions.



2. Computational method
2.1. CFD
2.1.1. Flow solver The flow field is solved via the in-house developed finite volume code
EllipSys3D. It solves the incompressible Reynolds Averaged Navier-Stokes (RANS) equations
over a discretized block-structured domain [9–11]. The SIMPLE algorithm [12] computes
the pressure-linked terms of the Navier-Stokes equations, whereas the QUICK scheme [13]
determines the convective terms. A modified Rhie-Chow algorithm avoids the tendency of
decoupling velocity and pressure from implementing discrete body forces inside the domain
[14–16]. The turbulence was incorporated via the Menter k−ω shear-stress transport model [17].

2.1.2. Turbine model The turbine rotor was represented by a permeable actuator disc. The
discrete body forces acting over the disc are either determined iteratively from the local blade
velocities and airfoil data or are predefined. In the former type of force allocation the airfoil
data and geometry of the NREL 5-MW [18] with a 126 m diameter rotor was used. At the set
wind speed of 8 m/s, the rotor performs 9.21 rotations per minute (RPM).

To arrive at a more general description of the laterally induced blockage the NREL 5-MW
turbines were subsequently replaced by constantly loaded discs. The global thrust coefficient
CT of a single NREL turbine at V∞ = 8 m/s equalled 0.798. The normal force thus acting over
a sectional area ∆A of the actuator disc is:

FN =
1

2
ρ∞V

2
∞CT∆A (1)

, with ρ∞ = 1.225 kg/m3 and R equalling the rotor radius. Note that approximating the
influence of a rotor with only normal forces correspond to the ideal case where the tip speed
ratio tends to infinity.
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Figure 2. Top view of the numerical domain.
All dimensions are scaled by the turbine
diameter D. Note that the boundaries are a
function of the inflow angle.
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Figure 3. Frontal view of the
numerical domain.

2.1.3. Numerical domain The numerical domain was discretized by a structured O-type
meshing methodology, containing a centrally located equispaced box mesh. The latter
encompassed the row of turbines. Farfield boundary conditions were applied to both, top and
bottom of the domain, i.e. the ground and the atmospheric boundary layer were not modelled.
The in- and outflow boundaries were applied dynamically to the sides of the O-mesh by the
pre-processor, depending on the inflow angle. More specifically the outflow sector encompassed



± 45◦ centred around the inflow direction. A schematic layout of the domain and its coordinate
system is shown in Figures 2 and 3. All dimensions were scaled by D. The spacing inside the
central box was D/32 in all directions. From there the mesh grew hyperbolically outwards in
the radial and z directions, where the dimension of the first cell matched that of the inner box.
The number of grid spaces along the radial and z directions were 32 and 128, respectively. The
total number of cells was 2.05 ×106.
It should be noted that the relatively large numerical domain causes the domain blockage to be
negligible.

For a full domain and mesh sensitivity analysis refer to the previous work by the authors [19].

2.2. Vortex method
The vortex model used in the present work is based on the method originally proposed by Øye [20]
and is described in more detail in Appendix 5. The basis of this model is formed by a turbine
with uniform circulation along each blade, where the product of total circulation and rotational
speed remains constant, as the former tends to zero and the latter to infinity. This corresponds
to simulating a constant loaded disc where the thrust coefficient, c.f. equation (Appendix A.3)
is:

CT =
ΓΩ

πV 2
∞

(2)

where Γ is the summed circulation of all blades, Ω the rotational speed and V∞ is the free-stream
velocity.
The wake of each turbine is modelled using discrete vortex rings in the near wake and a semi-
infinite vortex cylinder in the far-wake. In the first part of the near wake the rings are allowed
to expand while in the last part the ring radius is kept constant. In this paper the initial 30
rotor radii of the wake was simulated with vortex rings with a streamwise spacing of 0.1 rotor
radii. In the first 29 rotor radii the rings can expand freely while their radius is fixed in the last
part.

3. Results
3.1. The flow-field

Figure 4. Normalised axial velocity
contours (va/V∞) in the xy-plane at a yaw
angle (θ) of 0◦ and with the NREL 5-MW
turbine model.

Figure 5. Normalised axial velocity
contours (va/V∞) in the xy-plane at a yaw
angle (θ) of 45◦ and with the NREL 5-MW
turbine model.

In Figures 4 and 5 axial velocity contours for inflow angles of 0◦ and 45◦ are shown,
respectively. Both are xy-planes extracted at hub height and simulated with CFD using the
NREL 5-MW turbine model. The contours reveal the emergence of a ’global’ induction zone
along the entire turbine row, as they start to act as one single flow obstruction. Unsurprisingly



this global effect is symmetric for a perpendicular inflow, hence its extent is largest at the
central turbine. Moving the inflow brakes the symmetry and the upstream turbine (1) starts to
experience the strongest velocity deficit. Along the turbines the flow velocity starts to recover.
This effect is amplified in-line with increasing the inflow angle.

In-between the individual induction zones the flow is accelerated. This channelling aggravates
with increasing inflow angle, as the cross-sectional area normal to the flow direction is further
constrained by the wake of the neighbouring turbine. The direct consequence is the development
of non-symmetric local induction zones, since the flow accelerates towards the wake.

3.2. Power evolution
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Figure 6. Percentage change in the power coefficient for
different yaw angles.
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Figure 7. Summary of mean,
minimum and maximum values of
the results in Figure 6 as a function
of yaw angle.

3.2.1. NREL 5-MW In Figure 6 the evolution of global power coefficients along the row of
turbine is shown for all four inflow angles. The change in power for each turbine is calculated
with respect to an isolated turbine at the same location and orientation i.e.:

∆P |i,j =
P |i,j − Psingle|i,j

Psingle|i,j
× 100 (3)

,with i = {1, . . . , 5} and j = {0◦, 15◦, . . . , 45◦}. The mean and extrema are plotted as a
function of θ in Figure 7. Note that turbine 1 is upstream i.e. on the far left in Figure 5. A flow
perpendicular to the row (θ = 0) is shown to increase the power output universally above 0.5%
compared to an isolated turbine. This global rise and the gain towards the central turbine is in
line with the work of McTavish et al. [7]. Using half the lateral spacing compared to this study
(1.5D) he found larger gains in power of up to 8 % for the central turbine. Even when matching
all parameters of his numerical simulations, in particular the turbine thrust coefficient, CT , and
lateral spacing, only an increase of 3 % is registered. This discrepancy is most likely related to
the markedly different rotor designs and numerical methods employed. Nevertheless the trend
is clear.



The change in power across the turbines is altered significantly once the inflow is yawed,
except for the central turbine, where ∆CP is about constant for any θ. All curves start to
demonstrate an anti-symmetry about the central turbine for θ 6= 0◦. The losses upstream
translate to additional gains downstream, which is underlined by quasi constant mean power
rise of 0.57% across the turbines (see Figure 7). The amplitude increases rapidly with inflow
angle and reaches 3.1% for θ = 45◦.
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Figure 8. Comparison of the percentage changes in the power coefficient for different inflow
angles θ between CFD-AD simulations and the vortex method. They are presented with respect
to two independent y-axes, but equal scaling. The axes are shifted by 0.4% to each other.

3.2.2. Comparison CFD - vortex method Replacing the NREL turbine with a constantly loaded
disc does not alter the overall behaviour of the solution, as shown in Figure 8. The magnitude
of the percentage changes in the CP has dropped relative to the NREL simulations, but still
shows a net rise in the CP for the constantly loaded discs. In Figure 8 the y-axis of the vortex
solutions (on the right) is shifted upwards by 0.4%, as it consistently under-predicts the power
relative to CFD. Nevertheless the scale is left unchanged, which essentially demonstrates that
both methods agree on the changes in power upstream and downstream relative to the central
turbine.

4. Discussion
The overall rise in CP and the significant changes in the individual turbine power production
can be related to the emerging flow-field. As mentioned in Section 3.1 the flow is accelerated
in-between turbines and along the row of turbines in case of yawed inflows. Almost equal to the
acceleration along the turbines is the stronger deceleration in front of the upstream turbines. It
is this balance that ensures that power production for the entire row is essentially unchanged by
alterations in the inflow angle. Furthermore it underlines that global changes in the induction
zone are determining the individual power output, instead of local ones. Decreasing the distance
between turbine and neighbouring wake with increasing inflow angle, does not seem to accelerate



the flow sufficiently to noticeably impact the power evolution along the row.
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The ensuing flow-field itself is directly related to the wake induced velocities. Figure 9 shows
the velocity induced by an isolated, constantly loaded turbine located at the centre of the
domain (x/D = 0) on the line x/D = 3 (i.e. a line that would coincide with the centreline of
a neighbouring turbine). For both CFD and the vortex method a positive velocity is induced
downstream of y/D > 0 and negative upstream. In the CFD simulation the velocity induced
downstream is larger than the one upstream. The opposite is the case for the vortex method,
though similar to the comparison in Section 3.2.2 it is mainly an offset differentiating both
methods. In general the positive induced velocities found for y/D > 0 signify that if there was
a turbine placed at x/D = 3, its wake would be advected more quickly under the neighbouring
turbine’s influence. This would in turn reduce the negative velocity induced by the wake in
front of the turbine and diminish the local blockage. In the case of θ = 0◦ all turbine wakes are
influencing each other in a similar fashion, with the only difference being that the inner turbines
are experiencing the combined induced velocities of their neighbours. As each turbine’s wake
induces a positive velocity behind its rotational plane, yawing the turbines will thus lead to the
summation of induced positive velocities. Meaning that the last turbine experiences the added
induced velocities of four turbines. Reciprocally, all negative velocities are adding up from the
downstream towards the upstream turbines, leading to a stronger induction zone in front of the
first turbines. Following this argument including the ground would enlarge the induced velocities
considering the image vortices of the turbines.

The difference in induced velocities shown in Figure 9 is directly related to the wake expansion
predicted by each method. As shown in Figure 10, the wake is expanding more rapidly using the
vortex method. Especially close to the rotor do the two methods disagree. The simple vortex
method captures the overall trend predicted by the CFD simulations for yawed inflows, but does
not show an overall increase in the power across the row of turbines. This is most likely due to
some non-linear effects influencing the interplay of wakes that are not captured by the vortex
method as its wakes are inherently axisymmetric. This impacts the induced velocities and in



turn wake expansion. In Figure 10 the evolution of the wake radius of the outermost turbine
(5) from a CFD simulation at θ = 0◦ is shown. The inner side of the wake is expanding less
than the outer part, due to the channelling of the flow in-between turbines. This kind of wake
straightening towards the inner turbines was also observed numerically and experimentally by
McTavish et al. [7]. Additionally to the wake straightening, their free expansion in the vertical
plane results in slightly elliptical wakes in the CFD computations opposing the assumption of
axisymmetry. The wake radii determined for the CFD calculations are estimated from mass
conservation, though this might not be a very accurate representation, it demonstrates that the
wake radii differ between methods, which might explain some of the discrepancies between CFD
and vortex code.

Yet another explanation might be related to the numerical implementation of the actuator
disc. Whereas the forces in the vortex method act over an infinitesimally thin disc, they act over
several grid cells in the computational mesh of the CFD simulations, potentially influencing the
rate of wake expansion [21].

5. Conclusion
The lateral blockage induced by a row of five wind turbines and its impact on power production
was determined from numerical simulations with CFD and a vortex-based method.

The interaction of the wind turbine wakes leads to the development of a large decelerating
region in front of the entire row of rotors. Locally each turbine induces the strongest blockage,
causing the expanding flow to accelerate in-between them. This was especially pronounced once
the inflow angle increased, resulting in asymmetrically shaped local induction zones. However,
it is the combined ’global’ blockage from all turbines that determines the changes in power
production.

The negative velocities induced by the wakes in front of their respective rotor planes combine
and lead to a growing deceleration in front of the upstream turbines, leading to a power loss
of up to 1% for the most upstream NREL turbine at an inflow angle of 45◦. The positive
velocities induced behind the rotor planes on the other hand induce an acceleration towards the
downstream turbines, that in the most extreme case could yield a 2% increase in power output.

To test the reproducibility of these results the set-up was recreated using a vortex method
and the same CFD methodology only replacing the NREL turbine with a constantly loaded
actuator disc. The loading matched that of the NREL turbine. Though the magnitude of the
results was lower for both methods, the overall trends described above remained observable.
The discrepancy between vortex and CFD method were attributed to non-linear effects on
individual wake expansion. Whereas it was fixed for all turbines in the vortex computations,
the CFD results showed variations depending on turbine position.

For wind turbine testing sites it is of utmost importance to accurately measure the power
performance of individual turbines. Therefore even the limited variations in the power output
found in this investigation might proof to be significant. It is to be seen whether the findings
persist once a more realistic flow, including an atmospheric boundary layer, is employed.
However, for now the power evolution found in the Nysted wind farm is promising.
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Appendix A. A simple vortex model including wake expansion
The model used in the present work is a modified version of the model proposed by Øye [20].
In the following the basics of the model will be briefly described.

Appendix A.1. Rotor circulation and loads
The model considers an idealized wind turbine where each blade is represented by a line with a
constant circulation of Γb. The flow field is assumed incompressible, irrotational and inviscid so
the forces per unit span of the the rotating lines is given by the the Kutta-Joukowski relation:

f b = ρV rel × Γb (Appendix A.1)

where V rel is the local velocity relative to the blade and ρ denotes density. The local force per
unit area in the radial, tangential (driving force) and axial direction, respectively then becomes

F =

[
Fr
Fθ
Fz

]
=
Nbf bdr

2πrdr

ρΓΩ

2π

[
0

(V∞ +Wz)/(Ωr)
1−Wθ/(Ωr)

]
(Appendix A.2)

Here, Γ = nbΓb is the total circulation of all nb blades, Ω is the rotor rotational velocity, r is the
radius where the forces are evaluated and V∞ is the free stream velocity, which is assumed to
be parallel to the rotor axis. Wz and Wθ are the induced velocities in the axial and tangential
directions at the rotor plane, respectively.
In the following we now assume that the rotational speed of the rotor tends to infinity and the



total circulation to zero, such that their product becomes a finite value. In that case only the
axial force component remains and equation (Appendix A.2) simplifies to:

Fz =
ρΓΩ

2π
(Appendix A.3)

Note that in order to retain a finite value of the rotor force, the product ΓΩ needs to be finite,
i.e. Γ→ 0.

Appendix A.2. Modelling the wake
The present model is a so-called vortex model. Thus, the velocity is determined from the
vorticity in the wake using the Biot-Savart law. Because the vortex strength is constant along
each blade, vorticity will only be trailed from the roots and tips. Since the incoming wind is
further assumed to be uniform and aligned with the rotor axis, the root vortices merge to a
single axial vortex of strength Γ, while the tip vortices forms a circular tube of vorticity with
increasing radius as the wake expands. However, a consequence of the infinitely high rotational
speed is that the strength of the root vortex tends to zero (as shown above), i.e. there is no
wake rotation and that the density of the tip vorticity sheet only has a tangential component,
γt = dΓ/dz. The value of γt is most easily obtained by acknowledging that the vortex strength
between two windings of the tip vortex produced by one of the blades is Γ, i.e.:

γt(z) =
ΓΩ

2πVa(z)
(Appendix A.4)

where Va is the axial velocity at which the tip vortices are transported.
As in the original model by Øye [20] the near wake, where the wake is expanding, is modelled

Figure A1. Model of near and far wake with discrete vortex rings and a vortex cylinder,
respectively.

using discrete vortex rings, while the far wake, is modelled using a half-infinite circular vortex



cylinder with constant γt and radius, see Figure A1. When the induction from each vortex
ring as well as from the cylinder is known, then the total induced velocity W everywhere is
determined by simply adding all contributions together.

Appendix A.2.1. Modelling the near wake The near wake is modelled using discrete vortex
rings, where each ring are allowed to expand freely. The velocity induced by a vortex ring in a
point P is [20]:

wz(r, z) =
Γi

2π
√

(r +R)2 + z2

(
R2 − r2 − z2

(r −R)2 + z2
· E(k2(z)) +K(k2(z))

)
(Appendix A.5)

wr(r, z) =
Γi

2π
√

(r +R)2 + z2
z

r

(
r2 +R2 + z2

(r −R)2 + z2
E(k2(z))−K(k2(z))

)
(Appendix A.6)

with

k2(z) =
4Rr

(r +R)2 + z2

where r and z are the radial and axial coordinates, respectively of P relative to the ring center,
Γi is the strength of the ring and R is the radius of the ring, which is equal to the local wake
radius. Finally, E and K are the complete elliptic integral of first and second kind, respectively.
As shown in Figure A1, each ring represents a segment of the wake of length ∆z and because
the ring is positioned in the center of the segment its strength is

Γi =
1

2
(γt(zi) + γt(zi+1)) ∆z (Appendix A.7)

In order to get the vortex density we need to determine Va. As suggested by Øye [20] we assume
that Va is the average of the velocity on each side of the wake surface. Thus for a downstream
position zi, we get:

Va(zi) = V∞ +
1

2
(Wz(Rw(zi) + ∆r, zi)) +Wz(Rw(zi)−∆r, zi))) (Appendix A.8)

where ∆r is a small distance selected by the modeller (indicated with a ”×” in Figure A1)
and Wz is the total induced velocity from all vortex rings as well as from the vortex cylinder,
representing the far wake.
The local wake radius is computed from the continuity equation and the fact that the wake
surface is a streamtube, which implies that the flow through the rotor disc is the same as
through each wake cross-section. Thus, the local wake radius at z = zi is

Rw(zi) = R

√
V∞ + W̄z(0)

V∞ + W̄z(zi)
(Appendix A.9)

where R is the radius of the rotor and W̄z is the average induced velocity over the wake cross-
section at z = zi downstream of the rotor, i.e.

W̄z(zi) =
1

πRw(zi)2

∫ 2π

0

∫ Rw(zi)

0
Wz(r, θ, zi)rdrdθ (Appendix A.10)

Here, the dependency of Wz on azimuth position θ is explicitly shown because the present model
is also used for computing multiple turbines next to each other where the velocity in the wake
is not axisymmetric. Since the induced velocity depends on γt, which in turn depends on Va
and the local wake radius the equations (Appendix A.7)-(Appendix A.10) need to be solved
iteratively to determine the the strength and radius of the vortex rings.



Appendix A.2.2. Modelling the far wake Going downstream from the rotor the wake gradually
stops expanding and therefore the far wake is modelled with a half infinite cylinder of constant
γt and radius, both equal to the values of the last section in the near wake. Øye suggested to
approximate the contribution from the cylinder to the total induction as the induction along its
centreline. Here, we instead use the full velocity field induced by the cylinder, which in a point
P is [22]:

wr(r, z) = − γt
2π

√
R

r

[
2− k2(z)
k(z)

K
(
k2(z)

)
− 2

k(z)
E
(
k2(z)

)]
(Appendix A.11)

wz(r, z) =
γt
2

[
R− r + |R− r|

2|R− r|
+

zk(z)

2π
√
rR

(
K
(
k2(z)

)
+
R− r
R+ r

Π
(
k2(0), k2(z)

))]
(Appendix A.12)

where r and z is the radial and axial position of P relative to the center of the cylinder front, R
is the radius of the cylinder which is equal to the far wake radius and Π is the complete elliptic
integral of the third kind. The solution for the velocity near at the axis of the cylinder is:

wr(0, z) = 0; wz(0, z) =
γt
2

[
1 +

z√
R2 + z2

]
(Appendix A.13)

For r = R the axial induction is

wz(R, z) =
γt
4

+
γt
2

zk(z)

2π
√
rR

K
(
k2(z)

)
(Appendix A.14)

Appendix A.3. Model set-up
The accuracy of the above model depends on the chosen streamwise extent of the near wake, the
spacing between the vortex rings, ∆z, the distance ∆r used to compute the transport velocity,
Eq. (Appendix A.8), and the method used for computing W̄z(z).
In this paper we use ∆z = ∆r = R/10 as suggested by Øye [20]. Here, the near wake length is
here set to 30R, which is significantly longer than the 5R used by Øye. The extended near wake
length is necessary to accurately capture the mutual effect the near wake of each turbine has on
each other. In the simulation of a single turbine Øye [20] assumes that the velocity at 70% radius
is representative of the average velocity at each cross-section, i.e. W̄z(r, z) = Wz(0.7Rw, z). Here
we instead approximate W̄z(z) by computing the integrals in equation (Appendix A.10) using
the trapezoid rule with a discretization of dr = Rw/10 and dθ = π/2. Thus the average
velocity over the entire cross-section is estimated as the average of the integrated velocity at
four azimuthal positions corresponding to the two vertical and horizontal directions. The use of
several azimuthal positions is intended to take into account that the flow is not axisymmetric
when considering several turbines next to each other.


