Model of the Glucose-Insulin-Glucagon Dynamics after Subcutaneous Administration of a Glucagon Rescue Bolus in Healthy Humans

Wendt, Sabrina Lyngbye; Møller, Jan Kloppenborg; Haidar, Ahmad; Bysted, Britta V.; Knudsen, Carsten B.; Madsen, Henrik; Jørgensen, John Bagterp

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Model of the Glucose-Insulin-Glucagon Dynamics after Subcutaneous Administration of a Glucagon Rescuer Bolus in Healthy Humans

Sabrina L. Wendl1,2, Jan K. Møller2, Ahmad Haidar3, Britta V. Bysted1, Carsten K. Knudsen1, Henrik Madsen2, John B. Jørgensen2,1 Zealand Pharma A/S,2 Technical University of Denmark,3 McGill University

Abstract

In healthy individuals, insulin and glucagon work in a complex fashion to maintain blood glucose levels within a narrow range. This regulation is distorted in patients with diabetes. The hepatic glucose response due to an exogenous glucagon bolus depends on the current insulin concentration and thus endogenous glucose production (EGP) can no longer be determined. Thus knowledge about the in vivo dynamics of glucagon and insulin in the model of the glucose-insulin-glucagon dynamics in man including secretion of EGP.

1 Background

There is currently no consensus on a model describing the endogenous glucose production (EGP) as a function of glucose. Recent studies suggest a multiplicative effect of insulin and glucagon on EGP [1].

The pharmacokinetics (PK) model is a one-compartment model with fixed basal EGP. I(t) and q(t) are the masses of glucagon (pg) in the accessible and non-accessible compartments, respectively. The concentration of both hormones in plasma. Furthermore, literature suggests an upper limit to EGP.

3 Methods

The pharmacokinetics (PK) model is a one-compartment model with first order absorption.

\[
\frac{dC(t)}{dt} = -\frac{C(t)}{V} + \frac{F(t)}{V}
\]

\[
\frac{dI(t)}{dt} = -\frac{I(t)}{b} + \frac{q(t)}{b}
\]

\[
\frac{dq(t)}{dt} = \frac{q(t)}{a} - \frac{q(t)}{a}
\]

The PK model is the parameter distributions enable simulations of glucagon bolus in healthy male subjects weighing 84.5 ± 7.4 kg (mean ± SD). The PK model is the parameter distributions enable simulations of glucagon bolus in healthy male subjects weighing 84.5 ± 7.4 kg (mean ± SD). The PK model is the parameter distributions enable simulations of glucagon bolus in healthy male subjects weighing 84.5 ± 7.4 kg (mean ± SD). The PK model is the parameter distributions enable simulations of glucagon bolus in healthy male subjects weighing 84.5 ± 7.4 kg (mean ± SD). The PK model is the parameter distributions enable simulations of glucagon bolus in healthy male subjects weighing 84.5 ± 7.4 kg (mean ± SD).

Table 1: Average PK and PD parameter estimates and 95% confidence intervals. *Fixed parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(t)</td>
<td>0.0005</td>
<td>-0.0012 to 0.0022</td>
<td>0.30</td>
</tr>
<tr>
<td>b</td>
<td>12</td>
<td>6 to 18</td>
<td><0.001</td>
</tr>
<tr>
<td>a</td>
<td>329</td>
<td>10 to 550</td>
<td><0.001</td>
</tr>
</tbody>
</table>

4 Results

Figure 1: PK model fit of glucose with 95% confidence interval (blue) for each of the ten subjects.

5 Conclusions

The PK model and the parameter distributions enable simulations of glucagon bolus in healthy male subjects weighing 73.4 kg (mean ± SD). The PK model and the parameter distributions enable simulations of glucagon bolus in healthy male subjects weighing 73.4 kg (mean ± SD). The PK model and the parameter distributions enable simulations of glucagon bolus in healthy male subjects weighing 73.4 kg (mean ± SD). The PK model and the parameter distributions enable simulations of glucagon bolus in healthy male subjects weighing 73.4 kg (mean ± SD). The PK model and the parameter distributions enable simulations of glucagon bolus in healthy male subjects weighing 73.4 kg (mean ± SD). The PK model and the parameter distributions enable simulations of glucagon bolus in healthy male subjects weighing 73.4 kg (mean ± SD).

References

Zealand Pharma A/S

1 Corresponding author: SL Wendl, slw@zealandpharma.com or slw@dtu.dk