Does your milling procedure for cereals influence your pesticide residue results?

Poulsen, Mette Erecius; Herrmann, Susan Strange; Hajeb, Parvaneh

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Introduction: Previous studies at the EURL-CF has shown that there was a relation between decreasing particle size and increased extraction efficiency of incurred pesticide residues in cereals. To get an overview of how EU laboratories perform milling of cereal grains, a survey among 23 NRL-CFs was performed, (Table 1).

Procedure: Excess of grains from production of EUPT-C3 (oat) and EUPT-C4 (rye) Test items with incurred pesticides was used as test materials (Table 2). Each participating NRL milled 100 g of grain, both oat and rye, with their routine mill and procedure. At the EURL-CF, half of each sample was separated into fractions, using a vibratory sieve shaker, to determine the particle size distribution (Picture 1 and 2). Residue levels of the 23 different pesticides were determined by QuEChERS.

Particle size distribution: Large variation was seen in particle size. The particle size distributions showed that samples milled by knife and hammer mill were very un-homogenous and consisted of a large amount of particles larger than 0.7 mm. Samples milled by universal horizontal and centrifugal mill (at 0.5 or 1.0 mm) were more homogenous and consisted primarily of particles smaller than 0.7 mm. The distributions of the samples with the smallest and the largest particles for oat and rye are presented in Figure 1. The rye and oat samples with the smallest particles were milled frozen by centrifugal mill with sieve mesh size at 0.5 mm

The relative particle size, RPS of each sample was calculated as:

\[
\sum_{i=1}^{n} \frac{\text{Average between sieve } n \text{ and sieve } n-1 \text{ in } \mu m \times \text{Sample Amount in sieve } n}{g}
\]

The RPS ranged from 16-155 for rye and 24-129 for oat (Figure 2). As seen, in Figure 2 it is also possible to obtain primarily small particle size with knife mill. For knife mills the results are depended on the milling time, quality of the knife etc.

Pesticide residues: Results for oat showed that particle size had a clear influence on the extraction efficiency (Figure 3). The recoveries obtained for the samples with the smallest particles was up to 40% higher than the recoveries for the largest particles. For rye the influence was not so clear. However, also here significant differences were seen in samples with low and high RPS (Figure 3). We expect the difference between oat and rye to be that the pesticides are more evenly distributed in the oat kernel because it is protected against direct exposure of pesticides by the hulls.

Conclusion: Milling of cereal grains at the NRLs resulted in very different particle size distributions. Laboratories using centrifugal mill with sieve size of 0.5 or 1 mm, resulted in more homogenous and primarily of smaller particles. Thus, pesticide residue results for cereals depended on the degree of milling and higher results were achieved for samples with small RPS.