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Abstract

This paper addresses the influence of deteriorabngle Daniels system
characteristics on the value of structural healtimitoring (SHM). The value of SHM
is quantified as the difference between the lifeleypenefits with and without SHM.
A value of SHM analysis is performed within the fework of the Bayesian pre-
posterior decision theory and requires (1) strattyrerformance modelling and
prediction, (2) structural integrity management niedd€3) the (pre-posterior)
modelling of SHM and (4) the coupling of SHM anck thtructural performance
models. The pre-posterior decision theoretical éaork facilitates that the value of
SHM can be quantified before the SHM system is dii@atand before data are
acquired. The results of this study support decsstonselect structural systems for
which the SHM strategy load monitoring is optimal.

1 INTRODUCTION

Deteriorating and redundant structural systems itotesta large part of the build
environment. Considering the importance of thedethvironment and the sparse
societal resources, it is essential to ensureeaad an efficient structural integrity
management. However, the value of SHM is sparseitified in this regard. This
paper addresses thus decision support to selactwstal systems for which SHM is
optimal in terms of expected cost and risk reduactio

This paper builds upon the recently developed fraonleor the quantification of
the value of SHM (e.g. [1] and [2]) and focusseshenexplication of the system and
component performance influence on the value of SHKe framework for the
guantification of the value of SHM is outlined ath@ structural system performance
model and the SHM information model are descrilvedetail. With a generic case
study, the influence of structural system charadtesison the value of SHMs
guantified and discussed. The paper closes withdahelusions.
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2 QUANTIFICATION OF THE VALUE OF SHM FOR STRUCTURAL
SYSTEMS

The value of SHM can be calculated with a Valuénédrmation analysis within the
framework of the Bayesian pre-posterior decisioroti through the difference
between the expected value of the life cycle bendit utilizing SHM and the
expected value of the life cycle benefig without SHM (Equ. (1))

V=B -B, (1)

In the context of managing the structural integutigh risk based inspection
planning and taking basis in [3], the expected valuthe life cycle benefiB, for a
fixed inspection strategy,, can be written as the maximization of the expected
benefitsb with the | uncertain inspection outcomés, :[stl...zmvl...Zins A]T :

.

the m, (inspection) action choicesiy, Z[am 1+ B e Orgy m] and the o,
T

structural performance uncertaintixs:[Xl...Xo...XOn] :

B0 = ';;‘B?")](EQO l:b( ins ’Zins,l ’aRBI ,m ’Xo):l (2)

Utilizing SHM, the expected value of the life cydlenefit B, is calculated for a
fixed SHM strategy s delivering the j, uncertain SHM information

Z :[zsyj...zinsyj...zmsyi ]T with Equ. (3) taking basis in Equ. (2), i.e. in the stradt

S

integrity management with risk based inspectionrplam

B, =maxE, [ b(S.Z, s Zoes Fumm: X)) ®3)
The notations forB, and B, build upon the extensive form of a decision analysis,
i.e. that the posterior expectation is taken in regard to the structural performance
wherethe term “posteriof’ relates to the updating with inspection information. It is
noted, that the calculation of the expected benefits necessitate a benefit, cost and

consequence model which will be described in the further.

3 STRUCTURAL SYSTEM PERFORMANCE AND INTEGRITY
MANAGEMENT MODEL

In this section, the approaches for the structysatformance and integrity
management of the structural system are descritbedlstfuctural performance model
predicts the component and system structural reliabilibutihout the service life and
consists of a fatigue deteriorating structural systeodel subjected to extreme loads.
Based on the structural reliability, the expectedefies of the structural integrity



management and the structural risks are calculétdd,.,Z,. 8z . X,)) and
maximized to calculate the life cycle benetig see Equ. (2).

3.1 Structural system performance model

The structural performance model constitutes aydatideteriorating redundant
system subjected to extreme loads and is modellddaagls system with brittle
component behavior, see (Figure 1) and [4].

Load

n components Ny

%
y
| E S Ideal brittle

j | Infinite stiffness

\ A

Deflection

Figure 1: Daniels System

The probability of failure of a brittle Daniels systecan be calculated with Equ.
(4). It contains the product of the failure proliibs over n deteriorating
components with time dependent and ordered realimabf component resistances
R(t) (see Equ. () the model uncertaintiesvi,; and the system loading
multiplied with the loading model uncertaintyl. The system loading is usually
described with an extreme value distribution hawangeference period of one year
(see e.qg. [5)]).

1<i<n
R()<R(Y)<...<R (1) (5)
The deterioration induced resistance reduction eglatbed with the reduction

initial component resistanc® , in dependency of a resistance reduction fagtor
multiplied with the crack size distributioA (t) to wall thicknesgl, ratio (Equ. (6)).

R ()= Ro(1- O ()= R,{l— , m] ©

R, = P My, -max((n- i+ 3 R(9)- M.S< g @

d

The crack size distribution is modelled with a fume mechanics (FM) model
which is calibrated to an SN fatigue model. Thelight state functiong>™ (Equ. (7)
for component , i.e. hot spot, is formulated in dependency afjtet capacityA , the
annual number of stress cycles the stress rangeso, and the SN curve constants
m and K. The expected value of the stress ranﬁééaim] is calculated with the



model uncertaintyM , the cut-off stress rangg and the Weibull scale parameter
as well as the Weibull location parameker

Kk

The FM model is described with the limit state fimc g™ (Equ. (8)
containing the critical crack dept, and the crack depth distributica;](t) at time
t for the componenit.

g =A—v-t@ with E[Aaim]Z(Mk)mr(u%;(in 7)

FM

g =a.-a(d (8)

3.2 Structural system integrity management model

The structural system integrity management moddd$uipon the reliability
based inspection and repair planning (see [B] [8] and [9]) facilitating the
maximization of the benefit throughout the life ®@jctee Equ. (2), by identifyiran
optimal risk based inspection plan. The expectél dycle benefitsB, are then
calculated with Equ. (9) as the sum of the expectsts (negative expected benefits)
of the componential structural integrity managemest, the expected costs for
inspectionsE[ C,, | and repairE[ C |, the risk of component fatigue failufg,
and the risk for structural system failurg .

B, = maxEQo |:b( s +Zins1 »3a1.m ’Xo)] -

aRaI,m

maxE;, [—@(E[qmw} § Ga]t Ro)+ RH

It should be noted that the crack depth at yearA(t) see (Equ. (6)), is
calculated conditional on the inspection outcomeschv is calculated with the
approach proposead [10]. This algorithm can be interpreted as an enhancemehé of
classical rejection sampling algorithm for Bayesigdating and is here based on
subset simulation {[1]).

(9)

4 STRUCTURAL SYSTEM PERFORMANCE AND INTEGRITY
MANAGEMENT MODEL WITH SHM

The SHM system and their data are modelled in #w@dwork of the Bayesian
pre-posterior decision theory taking basis in charetics of model uncertainties.
Model uncertainties apply to almost all models zdifl in engineering such as
analytical, empirical or semi-empirical models andynbe determined by means of
measurements (see e.g. [5]). This implies that uneagents, i.e. SHM data, contain
information about the model uncertainties which barexploited in the probabilistic
modelling. In this way, yet unknown SHM data camimaleled.
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SHM for fatigue provides thus information about thedel uncertainties in the
SN fatigue model for the individual componentseitthe expected stress ranges for

fatigue are calculated in dependency of realizatiohthe model uncertaintied!
(Equ. @L0)) accounting for the SHM uncertainty .

E[Ac |I\A/IJ=(I\7IUk)mF(1+%1;(%T] (10)

On structural system level, the SHM information megd also to knowledge of
the associated loading model uncertainties, i.eermliong term load monitoring in
conjunction with an extreme value analysis has hmsformed. Then, the system
failure probability is calculated by utilizing theatzations of the loading model
uncertainty considering the loading measurementrtaiogesU¢ (Equ. (L1)). Note,

that the realizations of the resistance are requaédacilitate the solution of the brittle
Daniels system formulation and do not interfere with SHM modelling.

R, = P( Me -max((n- i+ ) R(9)- Mu.S< 9 (11)

I<i<n
The expected value of the life cycle benefit utilig SHM B, is calculated with
the expected value of the costs for the componesttiattural integrity management
E[C% | and E[ G ], for SHM E[C,, |, for the risks of component fatigue

failure R and system failuréR®* which are influenced by the SHM information (
s,Z, see Equ.12).

B, = maxE}_ [b( S,Z ; vhs +Znsi 13kaim X))] -

aRBI,m

o [ S (e[ )+ € 67+ € Cun+ )+ |

(12)

5 CASESTUDY

5.1 Structural system performance and integrity management model

A brittle Daniels system consisting ef=5 hot spots with the fatigue design
factors of 2.0 (three hot spots) and 3.0 (two hotgps analyzed. The system loading
S is resisted by th& components with the initial resistané¢®; . The mean of the
initial resistance is calibrated to the initial qooment probability failure
P(F,)=1.0-10 when not varied, see TABLE The loading of the Daniels system
and the resistance of the components are Log-NanthMWeibull distributed with a
standard deviation of 0.1. The probabilistic modetsthe model uncertaintieM ;
and Mg are determined in accordance with [5].

The FM model constitutes a 2D and single sIBaris’ law crack growth model
taking basis in12]. Theinitial crack size is modelled Exponentially distridd in line



with [13]. The expected values of the crack growth paramater of the stress
intensity factor model uncertainty are calibratetheoSN model.

The SN fatigue model takes basis ][ The model uncertaintie$/ for the
fatigue loading (Equ. (7)) are subdivided into thedel uncertainties for the load
calculation M, for the nominal stress calculatioM , for the hot spot stress
calculationM s and for the weld qualit,. The location parametér of the bng-
term stress distribution is adjusted to reach an accueduiatigue damagef 1.0 after
t = FDF -t years using the characteristic value or

TABLE 1: PROBABILISTIC STRUCTURAL PERFORMANCE MODEL

. . Exp. . . Std.
Var. | Dim. | Dist. value Std. dev] Var. Dim. Dist. Exp. value dev.
Mo | - LN 1.0 0.05 v yr' | Det. 3.0x10
R, - LN Cal. 0.1 ty yr Det. 20.0
Mg - LN 1.0 0.1 M, LN 0.89 0.27
S 1ly WBL 35 0.1 M, LN 1.01 0.12
I - Det. 0.6 - M s LN 1.02 0.20
A - LN 1.0 0.3 M, LN 1.02 0.20
InK - N 28.995 | 0.572 d mm Det. 16
m - Det. 3.0 a, Det. 16
k MPa LN Dep.on | 0.2-p, DoB Det. 0.5
FDF
1/x - Det. 1.2 r Det. 0.2
aspect
S MPa | Det. 0.0

LN: Lognormal, N: Normal, EX: Exponential, Cal.: kbeated, WBL: Weibull

The correlation model takes the correlation of the compdatgue deterioration,
the component initial resistances and the comporesigtance model uncertainties
into account. A correlation of the fatigue deteatmn of,o(Di D, ) =0.61is assumed
(when not varied) following 15]. The component resistances are correlated with
p(ROYi, R, )=O.5 (when not varied). The component resistance moaetrtainties
are assumed to be correlated \omi(hvl ritMg ) =0.5

The structural integrity management model takes basigirisk based inspection
and repair planningn component, i.e. hot spot, level. That means thabgimal
inspection plan for each of the hot spots is datexth such that a given annual
probability threshold for the fatigue failurgp, is not exceedeth the service life of

20 years. The inspection strategy is magnetic ghartnspections (MPI) whicls
modelled with the parametees=0.63 and  =1.16 following e.qg. [7].

The cost model for the service life integrity managetand the calculation of
risks takes basis in generic normalized costs fpentionC , .. =1.0-10°, for repair

1,Insp

C r=1.0-10% and for the consequences in case of hot spot étfgilure
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C p =1.0 and structural system failu€ =100, see [7] and16]. The discounting
rate is assumed o= 0.05.

52 SHM srategy

The SHM strategy consists of monitoring the systeadlihg (see Equl()) and
of hot spot fatigue stresses, i.e. the hot spot lga@ection 4), throughout the service
life. The expected values of the stress ranges for tiddoal hot spots are modeled
conditional on the realizations of the hot spotling model uncertainty, i.e.:

E[Ac, | M, |=(M_M MM Jk )mr(u %“; (%T] (13)

The model uncertainties for the nominal stressutation, for the hot spot stress
calculation and for the weld quality are assumedambe determinable with this SHM
strategy. The measurement uncertaitdy=Ug ~ N (1.0,0.05} accounts for the
uncertainties associated with the observationseétructural system and the hot spot
loading building upon quantified measurement uadaies in [L7].

The costs for this SHM strategy consisting of 5 sneament channels comprise
the investment (1.3B0 per channel), the installation (1:38" per channel) and the
operation (1.330 per year) according td.§]. The SHM cost model is calibrated to
the integrity management cost model (see previocsobg

5.3 Valueof load monitoring in dependency of the system characteristics

Figure 2 depicts the value of SHM (Equ.)(fgr the strategy load monitoring
throughout the service life in dependency of the poment probability of failure and
the correlations between the component resistaameesdeterioration. The value of

SHM strategy load monitoring is calculated by gugimiy the service life benefit8,
utilizing SHM (Equ. (2)) and B, without SHM (Equ. (9)) with the fatigue failure

thresholds 3.010° representing the minimum fatigue deterioration elekept
throughout the service life.

\Y

100.0
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80.0 //

70.0

60.0 /
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40.0 / ]
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10.0
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0.0001 0.001 O'OlP(F.) 0 0.5 p 1

— »(RiRyy) - —- p(D.D))

Figure 2: Value of SHM for a brittle Daniels systentdependency of the initial component failure
probability (left), the correlation between theistances and the deterioration (rigihtpughout the
service life.

7



The value of load monitoring increases for an iaseeof the initial component
probability of failure. This can be explained by (he reduction of the system
resistance, (2) the constancy of the system and éatigading and (3) thus the
constancy of the loading uncertainty reductida a consequence, the risk reduction
throughout the service life increasestlinearly on system level leading to increasing
value of load monitoring.

Considering the resistance correlatip(iR,;,R,; ), the value of load monitoring
decreases slightly with a concave curvature (intioglao the horizontal axis) with
increasing resistance correlation. The reasonhisriehavior is the increase of the
system reliability with increasing resistance cotreta in combination with the
constancy of the uncertainty and thus the risk tsalu¢chroughout the service life, as
previously reasoned.

With increasing damage correlatigriD,,D; ), the value of load monitoring stays
approximately constant. Here, it is also observedt ttihe system reliability
dependency on the damage correlation influencesapiy the value of load
monitoring.

6 CONCLUSIONS

This paper contains a study of the value of the SH&egyy load monitoring with
a Value of Information analysis within the framewadkthe Bayesian pre-posterior
decision theory The framework of the Bayesian pre-posterior decidioeory
facilitates that the value of load monitoring canduantified before load monitoring
implementation and data acquisition. The value afl lmonitoring is quantified as the
difference between the life cycle benefits with amthout load monitoring and is
analyzed for generic structural systems modellededsndant systems with brittle
component behavior. For this aim structural pertoroe and prediction models
including deterioration, structural integrity maeagent models, pre-posterior load
monitoring models coupled to the structural perfamoe models are utilized.

This paper reveals that the highest value of loatitoring considering brittle
Daniels systems is achieved for systems with a tavetsiral reliability throughout the
service life This means that load monitoring may be optimabifeteriorated systems
for system where the loading has increased and/@y&tems with a high correlation
of the component resistance and deterioration nmésiing.

It can be concluded that the value of load monitpiis inversely proportional
influenced by the structural system reliability dgrithe service life caused by the
constancy of the loading uncertainty reduction. Talele of SHM is hereby strongly
influenced by the component reliability, comparablyderately by the resistance
correlation and slightly by the deterioration cortiela

The SHM strategy load monitoring can be modelledhim framework of the
Bayesian pre-posterior decision theory by exploitimg characteristics of the model
uncertainties in conjunction with measurementsvaitid SHM uncertainties.
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