Electrodialytic recovery of phosphorus from chemically precipitated sewage sludge ashes

Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.; Ahrenfeldt, Jesper; Hauggaard-Nielsen, Henrik

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Phosphorus is a limited resource and an essential nutrient. Phosphate rock (P-rock) reserves are foreseen to be depleted in 300-400 years [1]. In the last decade, the EU imported around 90% of the P-rock that it consumed (IFA). In the EU there is a flow of 182,000 t of non-recycled P yearly in sewage sludge, around 20% of the EU P-rock consumption (Van Dijk et al. (submitted)).

A common practice in some countries (AT, BE, CH, DE, DK, NL, US, JP, HK) is incineration of sewage sludge. In recent years, gasification has gained attention.

Electrodialysis: a technology to recover P from sewage sludge ashes

A patent has been filed from DTU (WO 2015/032903) for the 2-compartment Electrodialytic (ED) cell.

With this setup (Figure 1), it is possible to recover up to 90% of P from incineration sewage sludge ashes, in the anolyte liquid with low content in heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) [2]. Only 26% of P was recovered with the same setup at the same conditions (liquid-to-solid ratio, current density and experimental time) with gasification sewage sludge ashes [3]. Most likely, due to the presence of Fe-P bindings (Figure 2). Poor results were previously observed for ashes with high Al content [4].

Up to 70% of P was eventually recovered for the same ashes with an innovative ED setup. The recovered P-liquid has a content in heavy metals comparable to the one of wet phosphoric acid (Figure 3). The new setup is currently being drafted for a patent filing.

Further work will focus on sewage sludge ashes containing both high content of both Fe and Al.

References

*Corresponding author. Tel.: + 45 45 25 21 63 E-mail address: rapv@byg.dtu.dk