Fiskeribiologisk vurdering af effekterne på ørredbestandene og havørredfiskeriet ved en forventet vandløbsindsats og etablering af vådområder

Nielsen, Jan; Koed, Anders

Publication date: 2016

Document Version
Også kaldet Forlagets PDF

Link back to DTU Orbit

Citation (APA):
http://www.aqua.dtu.dk/Publikationer/Forskningsrapporter/Forskningsrapporter_siden_2008
Fiskeribiologisk vurdering af effekterne på ørred-bestandene og havørredfiskeriet ved en forventet vandløbsindsats og etablering af vådområder
Fiskeriobiologisk vurdering af effekterne på ørredbestandene og havørredfiskeriet ved en forventet vandløbsindsats og etablering af vådområder

DTU Aqua-rapport nr. 310-2016

Af Jan Nielsen og Anders Koed
Kolofon

Titel: Fiskeribiologisk vurdering af effekterne på ørredbestandene og havørredfiskeriet ved en forventet vandløbsindsats og etablering af vådområder

Forfattere: Jan Nielsen og Anders Koed

DTU Aqua-rapport nr.: 310-2016

År: April 2016

Forsidefoto: Hans-Jørn Aggerholm Christensen

Udgivet af: Institut for Akvatiske Ressourcer, Vejlsøvej 39., 8600 Silkeborg

Download: www.aqua.dtu.dk/publikationer

ISSN: 1395-8216

ISBN: 978-87-7481-221-0
Indhold

1. Sammendrag .. 5
 1.1. Effekten af Vandløbsindsatsen på fiskebestandene i vandløb .. 5
 1.2. Effekten af vådområder på fiskebestandene .. 6
2. Indledning, baggrund og formål ... 7
3. Effekten af Vandløbsindsatsen på fiskebestandene i vandløb .. 9
 3.1. Forudsætninger for analysen af den forventede effekt .. 9
 3.2. Dataanalyse ... 11
 3.2.1. Nuværende smoltproduktion .. 11
 3.2.2. Forventet skønnet udvikling i smoltproduktionen ... 12
 3.2.3. Fangst af havørreder ... 13
 3.2.4. Andre arter .. 13
 3.3. Konklusion ... 14
4. Effekten af vådområder på fiskebestandene i vandløb ... 15
 4.1. Type 1 projekter - ådalsprojekter, herunder genslyngning af vandløb 17
 4.1.1. Genslyngede vandløb kan forbedre fiskebestandene .. 17
 4.1.2. Genslyngning kan have negative effekter ... 17
 4.2. Type 2 projekter - sø ved siden af vandløb .. 18
 4.3. Type 3 projekter - sø direkte i vandløb ... 19
 4.4. Konklusion vedr. vådområders påvirkning af vandløbsfisk ... 20
5. Eksempler på hvordan forskellige typer af vandindsatser påvirker fisk 21
 5.1. Indledning ... 21
 5.2. Vandløbenes tilstand .. 21
 5.3. Vandkvalitetens betydning .. 22
 5.4. De fysiske forholds betydning ... 23
 5.5. Effekt af forbedring af de fysiske forhold ... 25
 5.5.1. Miljøvenlig vedligeholdelse .. 25
 5.5.2. Udlægning af gydegrus, herunder på genslyngede strækninger 25
 5.6. Konklusion vedr. effekt af forbedring af de fysiske forhold ... 29
 5.7. Effekt af fjernelse af rørlægninger ... 30
 5.8. Effekt af opstemninger ... 31
1. Sammendrag

1.1. Effekten af Vandløbsindsatsen på fiskebestandene i vandløb

Ørreden findes i alle landsdele i vandløb, hvor der naturligt er gydemuligheder, og den kræver et relativt upåvirket vandmiljø i vandløbene. Derfor er arten i Danmark udpeget som miljøindikator i ørredens gydevandløb i forhold til EU’s Vandrammedirektiv. Den økologiske tilstand af et gydevandløb for ørred kan bl.a. kontrolleres ved anvendelse af et særligt ørredindeks, som er baseret på antallet af naturligt produceret ørredyngel fra gydning.

Alle ørreder gyder i vandløb, og ud af de 3.762 km vandløb, hvor der iflg. forslag til vandområdeplaner 2015-2021 forventes gennemført en vandindsats, er 2.197 km udpeget som gydevandløb for ørred. I dag lever der ørreder i en del af disse, men bestandene er ofte unaturligt små pga. menneskelig påvirkning.

DTU Aqua har beregnet, at effekten af en vandindsats med miljøforbedringer i de 2.197 km ørredvandløb skønsmæssigt vil være en 10-dobling af den naturlige produktion af ørredsmolt (havørredungerfisk), som stammer fra gydning i disse vandløb. Smoltene vokser sig store i havet, og ca. en tredjedel af bestanden bliver senere fanget som havørreder, primært ved lystfiskeri.

Et gydevandløb for ørred med en god ørredbestand og frie passagemuligheder for fisk på vandring til og fra havet kan realistisk set producere et årligt fiskeriudbytte af hjembragte havørreder i det rekreative fiskeri på op til ca.:

- 169 havørreder pr. km vandløb under to meters bredde, dvs. en havørred pr. 6 m vandløb.
- 265 havørreder pr. km af de større vandløb, dvs. en havørred pr. 4 m vandløb.

Fiskeri efter havørred i store vandløb samt langs kysterne er den mest udbredte fiskemetode blandt lystfiskere i Danmark (Sparrevohn et al. 2011, Sparrevohn & Storr-Paulsen 2012). I perioden 2010-2012 hjembragte lystfiskerne i Danmark gennemsnitligt ca. 241.000 havørreder over mindstemålet årligt til fortæring. Hertil kommer de fangne fisk, der genudsættes. Ud over dette blev der hjembragt ca. 33.000 havørreder, fanget i redskaber som nedgarn og ruser.

En vandindsats i de 2.197 km vandløb forventes at øge antallet af hjembragte lystfiskerfangede havørreder fra ca. 241.000 til ca. 529.000 havørreder, dvs. mindst en fordobling af det nuværende antal hjembragte havørreder.

Dermed vil vandindsatsen, ud over den generelle positive effekt på plante- og dyrelivet i vandløbene, bidrage væsentligt til udviklingen af det rekreative fiskeri, herunder fisketurisme etc.

En tilsvarende positiv effekt kan forventes for andre arter af bl.a. fisk og lampretter, der lige som ørreden er tilknyttet strygene i små og store vandløb, f.eks. laks, ål, stalling, helt, snæbel, havlampret, flodlampret, bæklampret og ferskvandsulk. Beskrivelsen af dette ligger dog uden for målsætningen for denne rapport.
1.2. **Effekten af vådområder på fiskebestandene**

Med henblik på at rense for vandløbsvandets indhold af kvælstof, er der på nationalt plan skitseret 8.850 ha kvælstofvådområder i Udkast til Vandområdeplaner 2015-2021 (Naturstyrelsen, 2014a,b,c,d). Det er ikke skitseret, hvor og hvordan indsatsen skal ske.

I forhold til vådområdernes påvirkning af de naturlige fiskebestande i vandløb kan vådområdeindsatsen i princippet opgøres på tre typer (tabel 1). Det er muligt at skønne effekten på fiskebestandene på projekt niveau, såfremt dette kendes i detaljer i forhold til geografisk placering og størrelse. Men da det ikke er skitseret, hvor og hvordan indsatsen skal ske, er det ikke muligt at kvantificere den samlede effekt af vådområdeindsatsen på fiskebestandene.

I de konkrete sager vil valget af vådområdestype være afgørende for de arter af vandrefisk, der naturligt hører hjemme i et vandsystem. Det kan f.eks. nævnes, at de wilde havørredbestande i vandsystemerne Aarhus Å og Egå stort set er forsvundet som følge af, at der for ca. 10 år siden blev gennemført vådområdeprojekter som søer direkte i vandløbene. Omvendt har et vådområdeprojekt, hvor Omme Å er blevet genslynget, haft stor positiv betydning for bestandene af fisk, smådyr og vandplanter.

Tabel 1: Oversigt over mulige påvirkninger af vådområder på vandløbene og deres fiskebestande.

Se mere på www.fiskepleje.dk.

<table>
<thead>
<tr>
<th>Type 1. Ådalsprojekter, herunder genslyngede vandløb</th>
<th>Type 2. Søer ved siden af vandløb</th>
<th>Type 3. Søer direkte i vandløb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generelt godt for vandløbsfiskene:</td>
<td>Begrænset påvirkning af vandløbet:</td>
<td>Generelt stor negativ påvirkning af vandløbets fisk:</td>
</tr>
<tr>
<td>- Ubetydeligt tab af vandrefisk</td>
<td>- Vandrefisk, f.eks. smolt</td>
<td>- Tab af vandrefisk, f.eks. havørredsmolt</td>
</tr>
<tr>
<td>- Flere gydeområder</td>
<td>- Gydeområder</td>
<td>- Evt. tab af gydeområder</td>
</tr>
<tr>
<td>- Mere yngle</td>
<td>- Levesteder</td>
<td>- Tab af levesteder</td>
</tr>
<tr>
<td>- Flere levesteder</td>
<td>- Plante- og dyreliv</td>
<td>- Unnaturlig vandtemperatur</td>
</tr>
<tr>
<td>- Mere naturligt plante- og dyreliv</td>
<td>- Temperatur- og iltforhold</td>
<td>- Unnaturlige iltforhold</td>
</tr>
<tr>
<td>I sjældne tilfælde fiskedød pga. øget vandtemperatur, ilt- svind mv.</td>
<td>- Vandkvalitet nedstrøms sø (alger)</td>
<td>- Unnaturligt plante- og dyreliv</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Uklart vand nedstrøms sø (alger)</td>
</tr>
</tbody>
</table>
2. Indledning, baggrund og formål

Baggrunden for denne rapport er et ønske fra Miljø- og Fødevareministeriet om at opnå et forbedret vidensgrundlag for effektmålinger af Landdistriktsprogrammet 2014-20 samt Hav- og fiskeriudviklingsprogrammet 2014-17 ("Fiskeriudviklingsprogrammet").

Miljø- og Fødevareministeriet, EU & Erhvervsudvikling, Center for Erhverv anmodede i 2015 Århus Universitet, Institut for Miljøvidenskab, Sektion for samfundsvidenskabelig miljøforskning, Københavns Universitet, Institut for Fødevare- og Ressourceøkonomi, Sektion for Miljø og Naturressourcer samt DTU Aqua om at tilvejebringe dette vidensgrundlag.

Formålet med nærværende rapport er at danne baggrunden for den del af den samlede rapport til Miljø- og Fødevareministeriet, Analyse af vidensgrundlaget for samfunds- og sektørøkonomiske konsekvenser af vandindsatser (Hasler et al. 2016), der omhandler 1. effekten af Vandløbsindsatsen (Fiskeriudviklingsprogrammet) samt 2. effekten af Vådområder, herunder minivådområder (Landdistriktsprogrammet) på fiskebestandene i vandløbene.

Rapporten består således af tre hoved afsnitter:

• Effekten af Vandløbsindsatsen på fiskebestandene i vandløbene
• Effekten af Vådområder på fiskebestandene i vandløbene.
• Eksempler på hvordan forskellige typer af vandindsatser påvirker fisk

Alle tre afsnitter kan læses uafhængigt af hinanden.

I den sammenhæng kan det bemærkes, at vandindsatser med en positiv effekt på ørred samtidig vil have positive effekter på en lang række andre fiskearter, der er naturligt hjemmehørende i danske

Vandløbsindsatsen forventes jf. udkast til vandområdeplaner at omfatte implementering af tiltag i ca. 1.800 km vandløb på landsplan, og det forventes, at indsatsen vil medføre forbedringer i vandkvaliteten i omkring 3.700 km vandløb. Naturstyrelsen har i sit "Virkemiddelkatalog" fra 2011 beskrevet, at det for en række vandløb vil være nødvendigt at forbedre deres fysiske tilstand, hvis de skal kunne opfylde vandrammedirektivets miljømål. Indsatsen kan omfatte vandløbsrestaurering og vedligeholdelse, samt tre enhedsvirkemidler i form af fjernelse af spærringer samt etablering af sandfang og okkeranlæg.

Kommunerne kan modtage tilskud til vandløbsrestaurering, som overordnet omfatter tre indsatstyper: Mindre restaureringer, større restaureringer samt åbning af rørlagte vandløb.

Da der, i sagens natur, er store usikkerheder ved at foretage beregninger på en indsats, som endnu ikke er gennemført, skal alle beregninger af det forventede resultat af indsatsen i denne rapport betrættes som skøn. Desuden er udkast til Vandområdeplanerne for 2015-2021 endnu ikke vedtaget, og der kan forekomme justeringer i forhold til de ovenfor angivne indsatser. Dette vil ikke ændre på beregningsmetoden for den skønnede effekt, men kan selvfølgelig betyde, at vurderingerne skal justeres i forhold den vandindsats, der reelt bliver gennemført.
3. Effekten af Vandløbsindsatsen på fiskebestandene i vandløb

3.1. Forudsætninger for analysen af den forventede effekt

Naturstyrelsen har i oktober 2015 oplyst, at miljøtilstanden i 3.762 km vandløb forventes at blive forbedret i forbindelse med indsatser i forslag til vandområdeplaner 2015-2021. Formålet er at opnå målopfyldelse med god økologisk tilstand i vandløb.

Samtidig er der fastsat miljømål for fisk i vandløb, herunder ørred og laks, som sammen med andre miljømål skal anvendes til at vurdere, om den ønskede miljøtilstand er opnået.

Ørreden findes i alle landsdele i de vandløb, hvor der naturligt er et vist fald med gydestryg. Arten er afhængig af et relativt naturligt vandløbsmiljø og er derfor særligt udpeget som miljøindikator for gydevandløbenes økologiske tilstand i det såkaldte "Ørredindeks", DFFVø, der er beskrevet i Kristensen et al. (2014b) og medtaget i en bekendtgørelse (Naturstyrelsen 2015b). DFFVø er baseret på den naturlige forekomst af ørred- og lakseyngel fra gydning i de to arters gydevandløb.

DTU Aqua har undersøgt de danske ørredvandløb gennem årtier og har et indgående kendskab til de danske ørredbestande samt den naturlige produktion af ørredyngel fra gydning. Resultaterne er beskrevet i DTU Aquas "Planer for fiskepleje" og på et online "Ørredkort" (kort.fiskepleje.dk). Dette afsnit beskriver

- den forventede skønne fremgang for ørredbestandene efter en vandindsats, samt
- hvor mange havørreder, der årligt skønnes fanget ved rekreativt fiskeri nu og i 2021.

En opgørelse fra Naturstyrelsen har vist, at ud af de 3.762 km vandløb, hvor der forventes gennemført en vandindsats, var 2.197 km af vandløbene udpeget som gydevandløb for ørred i de tidligere amters regionplaner (tabel 2).

<table>
<thead>
<tr>
<th>Typologi</th>
<th>Bredde</th>
<th>Målsætning som gydeområde for ørreder i de tidligere amters regionplaner</th>
<th>I alt km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B1</td>
</tr>
<tr>
<td>1</td>
<td>Under 2 m</td>
<td>151</td>
<td>1.040</td>
</tr>
<tr>
<td>2</td>
<td>2-10 m</td>
<td>61</td>
<td>700</td>
</tr>
<tr>
<td>3</td>
<td>Over 10 m</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Grænseværdierne for god økologisk tilstand i vandløb i forhold til DFFVø er afhængige af vandløbets bredde (tabell 3).

Tabel 3: Grænseværdier for opnåelse af god økologisk tilstand i forhold til DFFVø. Det samlede antal naturligt producerede årsyngel af ørred og laks indgår i indekset, idet arterne stort set stiller samme krav til vandløbets tilstand (Kristensen et al. 2014b, Naturstyrelsen 2015b).

<table>
<thead>
<tr>
<th>Typologi</th>
<th>Minimum antal årsyngel af ørred/laks om efteråret</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typologi 1</td>
<td>80 stk. pr. 100 m² vandløbsbund</td>
</tr>
<tr>
<td>Typologi 2 og 3</td>
<td>150 stk. pr. 100 m vandløb, dvs. målt pr. løbende meter vandløb</td>
</tr>
</tbody>
</table>

DTU Aqua har et fast stationsnet på ca. 5.000 stationer fordelt i alle landets ørredvandløb, hvor fiskebestanden jævnligt bliver undersøgt. Den naturlige forekomst af ørreder fra gydning bliver årligt undersøgt på ca. 500 af disse stationer, således at alle stationer i gennemsnit undersøges ca. én gang for hvert 10. år.

DTU Aquas data for perioden 2008-2012 var det primære udpegningsgrundlag ved Naturstyrelsens udpegning af de vandløb, hvor der skal gennemføres en vandindsats. Derfor har DTU Aqua, efter aftale med Naturstyrelsen, anvendt DTU Aquas data for perioden 2008-2012 til analyse af den forventede effekt af en vandindsats i de 2.197 km vandløb. Der er her regnet med:
- At den naturlige ørredbestand i de 2.197 km vandløb ikke kan leve op til kravene i DFFVø i dag, og
- At ørredbestanden *som minimum* vil opnå en størrelse i 2021, svarende til god økologisk tilstand i forhold til DFFVø.

Det skal fremhæves, at der også forventes gennemført en vandindsats i yderligere 1.565 km vandløb, der ikke er udpeget som gydeområde for laksefisk. Disse vandløb vil ofte fungere som levesteder for laksefisk. Disse vandløb vil ofte fungere som levesteder for laksefisk, der stammer fra gydning i gydevandløbene og kan dermed øge ørredbestandene via indvandring af ørreder fra gydevandløbene. Men denne positive effekt på bestandene er ikke indregnet i DTU Aquas beregninger over effekten af vandindsatsen i 2.197 km gydevandløb.

En vigtig forudsætning for vurderingen af den forventede effekt af vandindsatsen er:
- At vandløbets miljøtilstand bliver så god, at ørreden kan gyde og leve i vandløbet (rent vand, gydemauningsmuligheder, skjul etc.).
- At ørreden har fri op- og nedstrøms passagemulighed på sine vandringer i vandløbene. Dvs. at der ikke må ske tab af vandrefisk ved menneskeskabte opstemninger, kunstige vådområder etc.

Hvis de nævnte forudsætninger ikke holder, vil det reducere den skønnete effekt af vandindsatsen, idet antallet af gydende og fangbare havørreder da vil blive reduceret tilsvarende.
3.2. Dataanalyse

3.2.1. Nuværende smoltproduktion
881 strækninger, svarende til ca. 29 % af de 3.081 strækninger af danske ørredvandløb, som DTU Aqua har undersøgt i perioden 2008-2012, lever op til kravene om god økologisk tilstand i forhold til DFFVø (tabel 4). I disse vandløb er der som gennemsnit 2½ gange så meget ørredyngel, som der kræves for at opnå god økologisk tilstand:

<table>
<thead>
<tr>
<th>881 strækninger med målopfyldelse iht. DFFVø</th>
<th>Antal steder undersøgt</th>
<th>Gns. bredde</th>
<th>Gns. antal årsyngel</th>
<th>Beregnet antal smolt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typologi 1</td>
<td>505</td>
<td>1,3 m</td>
<td>204 pr. 100 m²</td>
<td>40,8 pr. 100 m²</td>
</tr>
<tr>
<td>Typologi 2 og 3</td>
<td>376</td>
<td>3,1 m</td>
<td>413 pr. 100 m</td>
<td>82,6 pr. 100 m</td>
</tr>
</tbody>
</table>

Omvendt lever ørredbestanden ikke op til kravene i DFFVø på 2.200 strækninger, svarende til ca. 71 % (tabel 5). Her er der i gennemsnit kun en femtedel af det antal ørredyngel, der kræves for at opnå god økologisk tilstand i forhold til DFFVø.

<table>
<thead>
<tr>
<th>2.200 strækninger uden målopfyldelse iht. DFFVø</th>
<th>Antal steder undersøgt</th>
<th>Gns. bredde</th>
<th>Gns. antal årsyngel</th>
<th>Beregnet antal smolt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typologi 1</td>
<td>1.378</td>
<td>1,2 m</td>
<td>12,9 pr. 100 m²</td>
<td>2,6 pr. 100 m²</td>
</tr>
<tr>
<td>Typologi 2 og 3</td>
<td>822</td>
<td>3,2 m</td>
<td>33,1 pr. 100 m</td>
<td>6,6 pr. 100 m</td>
</tr>
</tbody>
</table>

Det samlede potentielle skønnede produktionsareal for ørred i vandløb, hvor der forventes gennemført en vandindsats, er herefter beregnet ud fra data i tabel 2, 4 og 5 og angivet i tabel 6:

Tabel 6. Beregnede skønnede produktionsområder for ørred i de 2.197 km gydevandløb, hvor der forventes gennemført en vandindsats. Ved DFFVø i typologi 1-vandløb beregnes produktionsområdet som antal ørredyngel pr. m², mens der regnes med antal m vandløb ved typologi 2 og 3 vandløb.

<table>
<thead>
<tr>
<th>Vandløb med forventet vandindsats</th>
<th>Antal km vandløb</th>
<th>Gns. bredde</th>
<th>Samlet produktionsområde for ørred iht. DFFVø</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typologi 1</td>
<td>1.296</td>
<td>1,2 m</td>
<td>1.591.334 m²</td>
</tr>
<tr>
<td>Typologi 2 og 3</td>
<td>901</td>
<td>-</td>
<td>901.000 m</td>
</tr>
</tbody>
</table>
3.2.2. Forventet skønnet udvikling i smoltproduktionen

På baggrund af data fra tabellerne er den samlede bestand af årsyngel og det resulterende antal havørredsmolt beregnet for de 2.197 km vandløb, hvor der forventes gennemført en vandindsats (tabel 7).

Der er angivet tre scenarier:

- Smoltproduktion 2015 - nuværende forhold.
- Scenarie 1, smoltproduktion hvis miljømålene ift. DFFVø netop indfries (jf. tabel 3). Dette er et minimumsskøn.
- Scenarie 2, smoltproduktion hvis vandindsatsen skaber lige så store ørredbestande som i de vandløb, hvor miljømålet ift. DFFVø i dag allerede er opfyldt (jf. tabel 4). Dette er et maksimumsskøn.

Tabel 7. Det nuværende skønede antal havørredsmolt af en årgang, før og efter en vandindsats i de 2.197 km vandløb.

<table>
<thead>
<tr>
<th>Typologi 1</th>
<th>Antal km forbedres</th>
<th>Nuværende smoltproduktion</th>
<th>Fremtidige skønede smoltproduktion 2021 Scenarie 1*</th>
<th>Fremtidige skønede smoltproduktion 2021 Scenarie 2**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typologi 1</td>
<td>1.296</td>
<td>40.926</td>
<td>254.613</td>
<td>685.205</td>
</tr>
<tr>
<td>Typologi 2 og 3</td>
<td>901</td>
<td>59.569</td>
<td>270.300</td>
<td>744.696</td>
</tr>
<tr>
<td>Alle vandløb</td>
<td>2.197</td>
<td>100.495</td>
<td>524.913</td>
<td>1.429.900</td>
</tr>
</tbody>
</table>

* Scenarie 1, hvor en vandindsats netop sikrer opfyldelsen af miljømålene om god økologisk tilstand, vil resultere i en femdobling af det nuværende antal havørredsmolt i de 2.197 km vandløb. Dette skøn kan betragtes som et minimumsskøn.

** Scenarie 2, hvor en vandindsats sikrer bestandstætheder på niveau med de 29 % af ørredvandløbene, der i dag allerede opfylder miljømålene, vil øge antallet af smolt med en faktor ca. 14 i forhold til i dag. Dette skøn kan betragtes som et maksimumsskøn, men det er ikke realistisk, at alle vandløb vil få så store ørredbestande.

Der er grund til at formode, at en vandindsats vil skabe naturlige ørredbestande, der er større end ved scenarie 1. Dels er bestandene ofte noget større end miljømålenes krav, dels kan andre strækninger end de 2.197 km vandløb få øget deres ørredbestande som følge af, at ørrederne vandrer en del rundt m.m. Derfor er det realistisk, at effekten af en vandindsats i de 2.197 km vandløb vil resultere i et antal smolt, der ligger mellem de beregnede antal ved scenarie 1 og 2, dvs. ca. 1 mio. smolt. Det svarer til ca. 10 gange så mange smolt som i dag. Dette skøn kan altså betragtes som et realistisk middelskøn.

DTU Aquas skøn over effekten af den beskrevne vandindsats er derfor, at produktionen af havørredsmolt fra de 2.197 km vandløb efter en vandindsats:

- Som minimum vil være ca. 5 gange højere end i dag.
• Som maksimum vil være ca. 14 gange højere end i dag.
• Realistisk set vil være ca.10 gange højere end i dag.

3.2.3. **Fangst af havørreder**

Havørred er den mest efterstræbte fiskeart i det rekreative fiskeri i de danske vandløb og langs kystene. Ørredfiskeriet har en betydelig økonomisk værdi, og derfor er ørredvandløbenes potentielle som produktionsområder for ørred beregnet.

Undersøgelser har vist, at man generelt kan forvente, at ca. 32 % af en årgang smolt senere dør pga. fiskeridødelighed ved fiskeri efter havørred. Med baggrund i dette og data fra afsnit 3.2.2 kan det be- regnes, at vandindsatsen i de 2.197 km vandløb vil øge den efterfølgende fangst af havørred betyde- ligt (tabel 8):

Tabel 8. Det beregnede årligt antal fangne og hjembragte havørreder, før og efter en vandindsats i de 2.197 km vandløb.

<table>
<thead>
<tr>
<th>2015 Inden vandindsats</th>
<th>2021 Scenarie 1</th>
<th>2021 Scenarie 2</th>
<th>2021 Realistisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.000 havørreder</td>
<td>170.000 havørreder</td>
<td>463.000 havørreder</td>
<td>320.000 havørreder</td>
</tr>
</tbody>
</table>

DTU Aquas skøn over effekten af en vandindsats i de 2.197 km ørredvandløb er derfor, at den naturlige havørredbestand, lige som antallet af naturligt producerede smolt:

• Som minimum vil blive ca. 5 gange højere end i dag.
• Som maksimum vil være ca. 14 gange højere end i dag.
• Realistisk set vil blive ca.10 gange højere end i dag

Det kan ligeledes beregnes, at én km gydevandløb med en god ørredbestand og frie passagemulig- heder for fisk på vandring til og fra havet realistisk set årligt kan producere et fiskeriudbytte af hjem- bragte havørreder i det rekreative fiskeri på op til ca.:

• 169 havørreder pr. km vandløb under to meters bredde, dvs. en havørred pr. 6 m vandløb
• 265 havørreder pr. km af de større vandløb, dvs. en havørred pr. 4 m vandløb

Beregningerne over antal hjembragte havørreder kan anvendes ved socioøkonomiske analyser af vandløbenes betydning for det rekreative fiskeri. DTU Aqua anbefaler desuden, at de indgår som be- slutningsgrundlag for valg af løsningsforslag ved en vandindsats som f.eks. når en spærring skal fjernes, eller der skal anlægges et vådområde.

3.2.4. **Andre arter**

Dette notat beskriver den forventede effekt på ørredbestanden, herunder havørred. Men vandindsatsen vil også have en stor positiv effekt på andre arter, f.eks. laks, der stort set stiller de samme krav til vandløben som ørreden og indgår i ørredindekset. Den gyder ligesom ørreden på vandløbenes stryg, og ynglen lever i vandløbet 1-2 år, inden den udvandrer til havet som smolt.

I dag findes der kun naturlige bestande af laks i vestjyske vandløb, hvor bestandene har været tæt på at uddø, som det er sket i Gudenåen. Efter en række miljøforbedrende indsatser er laksebestandene på vej frem i Vestjylland og er nu så store, at et vist fiskeri er tilladt i vandløbene. Det har bl.a. betydet,
at laksefiskeriet i Skjern Å i dag skaber en årlig omsætning i lokalsamfundet på knap 15 mio.kr (Jordal-Jørgensen et al. 2014).

Ud over laks gyder en del andre arter også på stryg i vandløb, f.eks. stalling, helt, snæbel, havlampret, flodlampret, bæklampret og ferskvandsulk.

Det forventes også at vandindsatsen vil have en positiv effekt på ålebestanden, primært som følge af at der skabes passage ved mange eksisterende spærringer. Størrelsen af denne effekt er ikke mulig at kvantificere.

Endelig kan det nævnes, at strygene f.eks. er vigtige habitater for
- en lang række arter af smådyr, der kræver iltrigt vand.
- mange arter vandplanter
- pattedyr som odderen og visse fugle, der søger føde på strygene
- den sjældne tykskallede malermusling

3.3. **Konklusion**

Der forventes en betydelig positiv effekt på fiskebestandene i de 2.197 km gydevandløb for ørred, hvis den forventede vandindsats gennemføres.

Ud over en forbedret naturtilstand, også for andre arter, kan man forvente, at den årlige fangst af hjemtagne havørreder, der er naturligt produceret fra gydning i de 2.197 km vandløb, vil blive tidoblet fra ca. 32.000 til ca. 320.000 havørreder. Det vil medføre mindst en fordobling af det antal havørreder, der i dag fanges og hjemtages til fortæring ved rekreativt fiskeri i Danmark.

Hvis der tages hensyn til fiskenes særlige krav til vandløbene, viser mange erfaringer, at f.eks. ørredbestanden kan blive meget stor, ofte betydeligt større end de miljømål, der er fastsat i henhold til DFFVø. I den forbindelse kan vi henvise til DTU Aquas hjemmeside www.fiskepleje.dk, hvor man bl.a. kan finde vejledninger i vandløbsrestauration. Her beskriver vi specifikt laksefiskenes krav til passage-løsninger, gyde- og opvækstområder m.m. (Nielsen & Sivebæk 2013, 2015).
Vådområder, der anlægges ved vandløb for at reducere vandets indhold af kvælstof, kan have stor indvirkning på de naturlige fiskebestande. Afhængigt af typen kan vådområderne enten skabe større fiskebestande, have relativt neutral påvirkning eller medføre store tab af vandrende ørredungfisk m.m. (smolt).

4. Effekten af vådområder på fiskebestandene i vandløb

I de senere år er der anlagt en del vådområder ved vandløbene i Danmark for at reducere udledningen af næringsstoffer som fosfor og kvælstof til sø og hav. En del af næringsstofferne omsættes i vådområderne, i stedet for at blive udledt. Det nedsætter algevæksten i havet pga. mangel på næringsstoffer. Det mindskede antal alger reducerer risikoen for iltsvind i fjordene og havet, når algerne dør, og der skal bruges ilt fra vandet til at nedbryde algerne.

Ved udarbejdelsen af denne rapport var der overordnet planlagt i alt 8.850 ha kvælstofvådområder på nationalt plan, men ikke hvor og hvordan indsatsen skal ske (Naturstyrelsen, 2014a,b,c,d). Det er således alene det arealmæssige omfang af vådområdeindsatsen, som er skitseret i Udkast til Vandområdeplaner 2015-2021. Da valget af konkrete løsningsforslag på konkrete lokaliteter ikke er kendt, er det ikke muligt at kvantificere effekten af denne indsats på fiskebestandene. Dog vil effekten på fiskebestandene af den enkelte indsats kunne forudsiges på baggrund af DTU Aquas undersøgelser og analyser, når indsatsen skal planlægges på projekt niveau.

Set i forhold til vandløbsfiskene er der i princippet tre måder at skabe vådområder på, som enten kan have en positiv, neutral eller negativ virkning på de vandløbsfisk, der naturligt hører hjemme i vandløbet. Der er givet eksempler på effekten af forskellige typer vådområder på fiskebestandene i tabel 9, og i de følgende afsnit gennemgås den forventede effekt af vådområdeindsatsen på vandløbets fiskebestande.

<table>
<thead>
<tr>
<th>Type 1. Ådalsprojekter, herunder genslyngede vandløb</th>
<th>Type 2. Søer ved siden af vandløb</th>
<th>Type 3. Søer direkte i vandløb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generelt godt for vandløbsfiskene:</td>
<td>Begrænset påvirkning af vandløbets:</td>
<td>Generelt stor negativ påvirkning af vandløbets fisk:</td>
</tr>
<tr>
<td>- Ubetydeligt tab af vandrefisk</td>
<td>- Vandrefisk, f.eks. smolt</td>
<td>- Tab af vandrefisk, f.eks. havørredsmolt</td>
</tr>
<tr>
<td>- Fiere gydeområder</td>
<td>- Gydeområder</td>
<td>- Evt. tab af gydeområder</td>
</tr>
<tr>
<td>- Mere yngel</td>
<td>- Levesteder</td>
<td>- Tab af levesteder</td>
</tr>
<tr>
<td>- Fiere levesteder</td>
<td>- Plante- og dyreliv</td>
<td>- Unaturlig vandtemperatur</td>
</tr>
<tr>
<td>- Mere naturligt plantes- og dyreliv</td>
<td>- Temperatur- og iltforhold</td>
<td>- Unaturlige iltforhold</td>
</tr>
<tr>
<td>I sjældne tilfælde fiskedød pga. øget vandtemperatur, iltvind mv.</td>
<td>- Vandkvalitet nedstrøms sø (alger)</td>
<td>- Unaturligt plante- og dyreliv</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Uklart vand nedstrøms sø (alger)</td>
</tr>
</tbody>
</table>

Der er lavet fiskeundersøgelser ved udvalgte vådområder af de tre typer, og en oversigt over påvirkningen kan ses i tabel 10:

Tabel 10: Oversigt over den direkte påvirkning på ørredbestanden i vandløb med vådområder. Se mere på www.fiskepleje.dk.

<table>
<thead>
<tr>
<th>Vådområde</th>
<th>Øget produktion af ørredyngel</th>
<th>Tab af ørredsmolt</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knabberup Sø, sø ved siden af vandløb</td>
<td>Ja. Vandstanden er hævet med gydestryg i åen</td>
<td>0,1 %</td>
<td>Jan Nielsen, DTU Aqua</td>
</tr>
<tr>
<td>Kongens Kær, sø ved siden af vandløb</td>
<td>Nej</td>
<td>0 %</td>
<td>Bo Levesen, Vejle Kommune pers. opl.</td>
</tr>
<tr>
<td>Egå Engsø, sø direkte i vandløb</td>
<td>Nej</td>
<td>83 % (gns.)</td>
<td>M. Kristensen et al. (2014)</td>
</tr>
<tr>
<td>Årslev Engsø, sø direkte i vandløb</td>
<td>Nej</td>
<td>51 % (fra Lyngbygård Å) 72 % (Fra Aarhus Å)</td>
<td>Boel & Koed (2013)</td>
</tr>
</tbody>
</table>
Vådområdeprojekt ved Omme Å, hvor åen er genslynet og hævet i terræn med gydestryg. Ørrederne og stallingerne gyder på strygene, og bestandene er blevet meget større. Desuden er der nu mange "gode" smådyr og vandplanter, dvs. arter, der hører hjemme i naturlige vandløb.

4.1. **Type 1 projekter - ådalsprojekter, herunder genslyngning af vandløb**

4.1.1. **Genslyngede vandløb kan forbedre fiskebestandene**
Mange vandløb er regulerede og gravet så langt ned i terrænet, at de naturlige og periodiske oversvømmelser ikke længere finder sted. En genslyngning af vandløbet, hvor man hæver vandløbets bund med gydestryg for laksefisk og genskaber det naturlige fald, kan genskabe vandløbets dynamik, herunder med naturlige periodiske oversvømmelser i ådalen. Herved kan man, ud over at få omsat næringsstoffer, genskabe den naturlige sammenhæng mellem vandløbet og ådalen og dermed sikre en artsrig natur.

4.1.2. **Genslyngning kan have negative effekter**
Terrænet har ofte sat sig i drænede områder, hvor jorden med tiden synker sammen. Det kan give problemer, hvis man lægger vandløbet tilbage i det oprindelige forløb, hvor der kan opstå permanent oversvømmede områder i ådalenene eller unaturlige oversvømmelser ved skybrud om sommeren, hvor der er meget grøde i vandløbet. Effekten kan være uønskede, negative effekter på vandløbet med iltsvind, øget behov for grødeskæring m.m. (Frier et al. 2006, Moeslund 2008, Holm 2014). Hvis det kan forudses, bør man overveje enten at undlade genslyngning, eller man bør anlægge det genslyngede vandløb i det laveste område, så oversvømmelserne af ådalen bliver begrænset.

Det bør også overvejes, om terrænet har sat sig så meget pga. dræning, at et genslynet vandløb får et unaturligt lavt fald, og om man derfor skal undlade genslyngning.
Knabberup Sø er anlagt som en sø ved siden af Vejle Å, og det meste af vandet fra Vejle Å løber uden om søen. Smolttabet er negligerbart, kun 1 promille.

4.2. Type 2 projekter - sø ved siden af vandløb

Havørred og laks gyder i vandløb, og ungfiskene udvandrer til havet som smolt om foråret. En stor del af smoltenes vandringer foregår passivt, hvor de lader sig drive med strømmen i vandløbet.

Ørreder overlever ikke ret godt i små, lavvandede søer, der bliver varme om sommeren, og man har længe vidst, at ørred- og laksesmolt har store problemer med at finde gennem søer, der ligger direkte i vandløb. Smoltene har svært ved at finde gennem søerne og bliver ofte ædt af søens rovfisk og fugle. I vandkraftsøer forsvinder 68 – 93 % af ørredsmoltene (Koed et al. 2004), og der er fundet tilsvarende tab i visse vådområder, der er etableret som søer direkte i vandløb (Boel & Koed 2013; M. Kristensen et al. 2014).

DTU Aqua har kun kendskab til to fiskeundersøgelser af smolttabet i søer, der er anlagt ved siden af et vandløb. De er begge lavet i Vejle Ådal i Østjylland, hvor der i 2004-2009 blev etableret to vådområder som søer ved siden af Vejle Å. For at sikre, at fiskebestanden ikke blev påvirket negativt, er projekterne udformet, så kun en mindre del af åens vandføring bliver ledt ind i søerne.
Det meste vand fra Vejle Å løber uden om vandindtaget til søerne, der samtidig er anlagt, så fiskene har svært ved at finde det. De to undersøgelser har vist, at fiskebestanden stort set er upåvirket.

Den ene sø, Knabberup Sø, er sikret en stabil minimumsvandtløsning fra åen ved, at der er anlagt et stryg med gydegrus umiddelbart nedstrøms vandindtaget. Hensigten med stryget er at kombinere behovet for en fast tærskel på bunden til at sikre en stabil vandføring ind i søen med at skabe muligheder for gydning af laksefisk og sikring af gode biologiske forhold i åen.

Den anden sø, Kongens Kær, ligger så tæt på Vejle Fjord, at vandstanden i åen ved vandindtaget er påvirket af vandstanden i fjorden. Derfor løber der vand ind i søen ved højvande og vand ud af søen ved lavvande.

DTU Aqua har ved undersøgelser i 2009-2015 konstateret et gennemsnitligt tab af ørredsmolt i Egå Engsø på 83 %. Før søen blev anlagt var der ikke noget tab af smolt i det samme område.

4.3. **Type 3 projekter - sø direkte i vandløb**

De undersøgelser, der hidtil er udført omkring smoltens passage gennem søer og vådområder har alle påvist, at man samtidig med at rense for kvælstof også reducerer ørredbestanden betydeligt. Havørredbestandene bliver således kraftigt negativt påvirket, hvis der bliver anlagt søer direkte i vandløb til rensning af kvælstof.

Hvis man ønsker at bevare eller forbedre den naturlige ørredbestand i et vandsystem, bør det derfor overvejes, hvordan man kan undgå at påvirke ørredbestanden negativt ved anlæg af vådområder. F.eks. kan det overvejes at lave Type 1 projekter, hvor den naturlige hydrologi genskabes med periodiske oversvømmelser i ådalen, via genslyngning og anlæg af gydetryg. Herved kan fiskebestanden
og den generelle naturtilstand i vandløbet og ådalen forbedres samtidig med, at vandet bliver renset for kvælstof.

Ud over den direkte påvirkning af vandløbet på det sted, hvor søen anlægges, vil der ofte, som følge af søen, opstå temperaturstigninger og algevækst i søvandet, der kan påvirke vandløbets økologiske tilstand nedstrøms søen. Det kan f.eks. forårsage, at en del arter af vandplanter, smådyr og fisk bliver negativt påvirket på lange strækninger eller forsvinder. Der kan også være tale om en opstuvningseffekt i vandløbet opstrøms søen, idet vandstanden ofte hæves unaturligt i søens afløbsende for at sikre en stabil vandstand i søen. Det nedsætter vandhastigheden og ændrer den økologiske tilstand i vandløbet.

I visse tilfælde anlægger man en sø i et område, hvor der tidligere har været en sø. Denne type søer bliver ofte større end den tidligere afvandede sø pga. sætninger i terrænet, og vandet bliver ofte uklart pga. algevækst og mange næringstoffer i søen. Derfor kan den nye sø have en stor, negativ påvirkning på den økologiske tilstand i vandløbet, set i forhold til den oprindelige sø. Det gælder også for vandløbet nedstrøms søen, som kan få uklart, opvarmet vand, evt. med dårligere ilforhold og et forringet plante- og dyreliv.

Lignende problemer kan forventes andre steder, hvor tidligere søer er blevet afvandet. Såfremt man ønsker at sikre bestandene af vandrefisk, bør eventuelle vådområdeprojekter derfor overvejes nøje inden valg af en konkret løsning.

4.4. **Konklusion vedr. vådområders påvirkning af vandløbsfisk**

Der er skitseret i 8.850 ha kvælstofvådområde i Udkast til Vandområdeplaner 2015-2021 på nationalt plan (Naturstyrelsen, 2014a,b,c,d). Det er ikke skitseret, hvor og hvordan indsatsen skal ske.

I forhold til fiskebestandene kan vådområdeindsatsen i princippet opgøres på tre typer (tabel 9), og det er muligt at skønne effekten på fiskebestandene på projektniveau, såfremt dette kendes i detaljer i forhold til type, geografisk placering og størrelse. Men da det ikke er skitseret, hvor og hvordan den forventede, nationale indsats skal ske, er det ikke muligt at kvantificere den samlede effekt af vådområdeindsatsen på fiskebestandene.

Valget af vådområdeindsatsforslag er imidlertid afgørende for de arter af vandrefisk, der naturligt hører hjemme i et vandsystem. Som eksempler kan nævnes, at
De vilde havørredbestande i vandsystemerne Aarhus Å og Egå er stort set forsvundet som følge af, at der for ca. 10 år siden blev gennemført vådområdeprojekter som sør direkte i vandløbene.

Et vådområdeprojekt, hvor Omme Å blev genslynget og vandstanden hævet med gydestryg for laksefisk, har ud over en god kvælstofrensning haft stor positiv betydning for bestandene af fisk, smådyr og vandplanter.

5. Eksempler på hvordan forskellige typer af vandindsatser påvirker fisk

5.1. Indledning
I 2011 beskrev Naturstyrelsen i sit "Virkemiddelkatalog", at det for en række vandløb vil være nødvendigt at forbedre deres fysiske tilstand, hvis de skal kunne opfylde vandrammedirektivets miljømål. Indsatsen kan omfatte:

- Vandløbsrestaurering
- Åbning af rørlagte strækninger
- Fjernelse af fysiske spærringer i vandløb
- Ændret vandløbsvedligeholdelse

Virkemidler og tiltag kan påvirke bestandene af vandrefisk meget, herunder de fisk, der gennemfører en del af livscyklus i havet og er afhængige af gode gyde- og opvækstforhold i vandløb samt muligheden for at kunne passere frit i vandløbene på deres vandringer til og fra havet.

Som nævnt i tidligere afsnit er ørreden bl.a. udpeget som miljøindikator (Naturstyrelsen 2015b) og stiller en række miljøkrav til vandløbene, som kendetegner vandløb med et varieret dyre- og planteliv. Desuden er der udført mange undersøgelser over ørredbestandene i de danske vandløb, herunder hvordan de reagerer på miljøforbedrende tiltag.

Der må forventes tilsvarende effekter på andre arter, men det er sjældent dokumenteret. Derfor er mange af eksemplerne i de følgende afsnit baseret på ørreden.

5.2. Vandløbenes tilstand
I Danmark er der stort set ingen naturlige spærringer i vandløbene, og derfor vandrer fisk fra saltvand, som f.eks. ål og havørred, naturligt op i de fleste vandløb, lige fra den store å til den lille bæk. Hvis
Vandløbene er relativt upåvirkede, kan der f.eks. findes naturlige ørredbestande i vandløb, der er så små, at de næsten tørrer ud om sommeren.

Et upåvirket vandløb har et varieret, naturligt plante- og dyreliv. Dvs. at der er
- Fri faunapassage
- Rent vand
- Naturlig vandføring, dvs. upåvirket af vandindvinding og udledning af overfladevand
- Naturlig variation i vandløbet

Hvis vandløbet ikke har den naturlistand, man kunne forvente, dvs. at det naturlige dyre- og planteliv er forarmet i forhold til en upåvirket situation, skyldes det næsten altid menneskelig påvirkning på et eller flere af de nævnte områder.

5.3. Vandkvalitetens betydning

Den naturlige udbredelse af planter, dyr og fisk i vandløbene er bl.a. afhængige af, at vandet ikke er forurenet. Hvis mængden af næringsstoffer, ilforbruget, den kemiske sammensætning af vandet etc. er væsentligt anderledes end det naturlige niveau, vil dette påvirke artssammensætningen i retning af, at den ændres.

Figur 1

Den naturlige forekomst af ørredyngel fra gydning i Bygholm Å-systemet 1965-2009.

Data fra DTU Aquas undersøgelser i forbindelse med revision af udsætningsplaner.

Forureningens negative betydning for fiskebestandene i danske vandløb frem til 1960’erne er detaljere t gennemgået af den tidligere statsbiolog Knud Larsen (1987a,b,c), som beskrev de enkelte danske vandløb i en rapportserie ”Havørredopgangen i danske vandløb 1900-1960”. Man kan her konstatere, at ørredbestandene har været voldsomt reduceret pga. forureninger fra mejerier, landbrug m.m. Hel-
digvis er det nu sjældent at finde forurening i et omfang, der giver akut fiskedød. Hvis det er tilfældet, er der tale om en ulovlig udledning. Derfor er bestandene nu meget større end i 1960’erne.

Forureningens påvirkning af vandløb er ikke yderligere omtalt i dette notat.

5.4. **De fysiske forholds betydning**

Man har i årtier været klar over, at de enkelte arter af planter, dyr og fisk er tilknyttet særlige habitater, og at de fysiske forhold har meget stor betydning for, om arterne kan trives. Det er bl.a. baggrunden for, at "den nye" vandløbslov fra 1982 indeholder bestemmelser, der kan sikre og genskabe de fysiske forhold i vandløbene, hvis de er forringede så meget, at vandløbene ikke længere kan have et naturligt dyre- og planteliv, herunder fisk (Madsen 1995).

Figur 2
Forekomsten af smerling ved forskellige typer skjul. Ynglen kræver primært vandplanter som skjul.

De fleste undersøgelser af fiskenes miljøkrav i danske vandløb er lavet for ørred, der findes i formerne bæk-, sø- og havørred i alle landsdele. Bestandene er undersøgt siden 1930’erne, og man vidste alle- rede dengang, at de naturlige bestande af ørreder var afhængige af, at der er gyde og yngelovpækst-områder i vandløbene (Rasmussen 2012).

Gode ørredbestande er tegn på, at mange andre arter af planter og dyr trives, og ørred er derfor sær- deles velegnet som miljøindikator. Ørreden kræver, lige som en del rentvandskrævende smådyr, at der skal være et vist fald og stryg med naturligt varierede fysiske forhold (figur 3).
Figur 3
Sammenhængen mellem den fysiske variation i vandløbet, smådyrlivet og antallet af ørreder.

Tidligere blev livet af smådyr bedømt efter det såkaldte Saprobieindeks, der blev brugt som udgangspunkt for det nuværende faunaindeks (DVFI).

Figurene viser entydigt, at jo mere fysisk varieret vandløbet er, jo bedre er livsforholdene for et varieret, naturligt liv af smådyr og ørreder.

Figur 4
Den naturlige bestand (tæthed) af ½-års ørreder pr. 100 m² vandløb, målt i forhold til den fysiske variation. Data fra DTU Aquas database for 725 strækninger af ørredvandløb med en bredde under to meter, nedstrøms spærringer og uden forurening. 95 % usikkerhedsintervaller angivet. Kristensen et al. (2014b).
5.5. **Effekt af forbedring af de fysiske forhold**

5.5.1. **Miljøvenlig vedligeholdelse**
Det har i mange år været kendt, at dårlige fysiske forhold, pga. menneskelig påvirkning med regulerings og vedligeholdelse af vandløb, ofte er årsagen til, at miljømålene ikke kan oplydes. Et godt eksempel på dette er, at bestandene af ørreder blev flerdoblet, da Århus Amt indførte skånsom vedligeholdelse af vandløb, der resulterede i mere variation og skjul i vandløbene (figur 5).

Som tidligere nævnt anvendes virkemidlet "ændret vedligeholdelse" imidlertid ikke i de vedtagne vandplaner som konsekvens af regeringens indgåelse af aftale om Vækstplan for Fødevarer d. 2. april 2014 (Naturstyrelsen 2015a). Derfor er ændret vedligeholdelse ikke omtalt yderligere i dette notat.

Figur 5
En undersøgelse af vandløbene i det tidligere Århus Amt viste, at der var sket en betydelig fremgang i antallet af ørreder, siden den skånsomme vedligeholdelse af vandløb blev gennemført.

Figur fra Kaarup (1998).

5.5.2. **Udlægning af gydegrus, herunder på genslyngede strækninger**
DTU Aqua afholder hvert år flere kurser i vandløbsrestaurering og har beskrevet metoderne i vejledninger, som jævnligt opdateres med den nyeste viden (Nielsen & Sivebæk 2013, 2015). Ideen er at genskabe så naturlige forhold i vandløbene som muligt, og på Naturstyrelsens hjemmeside fremhæves vejledningen i at etablere gydebanker som et nøgledokument i vandløbsrestaurering.

71 lokaliteter på Sjælland, Fyn og i Jylland
Trend Å, tilløb til Limfjorden

Gudenå nær udspringet, opstrøms Tørring
Der blev i 1986 udlagt fem gydebanker på hver 20 m’s længde i Gudenåen opstrøms Tørring, hvor der i de følgende år kom 20-50 gange så meget yngel af stalling og ørred som tidligere (Nielsen 2004b). Da et sandfang ved de tre nederste gydebanker ikke blev tømt i en periode, sandede gydebankerne dog til og stoppede med at fungere. Herefter blev sandfanget igen tømt jævnligt, og i 2001 blev der igen fundet en fin yngelproduktion af ørred fra gydning (Dolby & Jørgensen 2002).

Gryde Å, tilløb til Storå
Holstebro Kommune har i 2010–2012 gennemført en omfattende restaurering af Gryde Å, hvor åen stedvist er blevet genslynget, og der er etableret ca. 3.300 m² gyde- og opvækstareal for laksefisk. Fiskebestanden blev undersøgt på 13 etablerede stryg med udlagt gydegrus og tre urørte referencestrækninger i september 2013 (Deacon & Larsen 2013). Fiskebestanden var domineret af laks og ørreder, undtagen på en enkelt station. Der var naturlig lakseyngel fra gydning alle steder. Desuden var der seks andre fiskearter. Tæthederne var på op til 3,9 ørredyngel pr. m. vandløb henh. 10,9 stk. lakseyngel (tabel 11). 81 % af stationerne leverede op til miljømålet for god økologisk tilstand. Kravet for høj økologisk tilstand er 2,5 stk. ørred- og lakseyngel pr. m. vandløb, og det var overholdt på 63 % stationerne.

Råsted Lilleå, tilløb til Storå
Holstebro Kommune har i 2007-2008 anlagt 22 gydestryg for laks og ørred og undersøgt fiskebestanden på 13 stryg i august 2012 (Deacon & Larsen 2012). Der var op til 5,2 stk. lakseyngel og 2,6 ørredyngel pr. m. vandløb fra gydning (tabel 11). Desuden var der 10 andre fiskearter. 69 % af stationerne var i god økologisk tilstand, og kravet for høj økologisk tilstand var overholdt på 53 % af stationerne.

Tabel 11
Tæthederne af naturligt forekommende yngel af laks og ørred fra gydning i tre vandløb i Storåsystemet. Kravet til god økologisk tilstand i forhold til DFFVø er en samlet tæthed af lakse- og ørredyngel på 1,5 stk. pr. m. vandløb i vandløb, der er mindst to meter brede. Data fra Deacon & Larsen (2012,2013) og Deacon et al. (2014).

<table>
<thead>
<tr>
<th>Vandløb</th>
<th>Gns. tæthed</th>
<th>Max. tæthed</th>
<th>% med god økologisk tilstand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antal yngel pr. m vandløb</td>
<td>Antal yngel pr. m vandløb</td>
<td>DFFVø</td>
</tr>
<tr>
<td></td>
<td>Laks</td>
<td>Ørred</td>
<td>Laks</td>
</tr>
<tr>
<td>Gryde Å</td>
<td>3,6</td>
<td>1,1</td>
<td>10,9</td>
</tr>
<tr>
<td>Råsted Lilleå</td>
<td>2,3</td>
<td>1,3</td>
<td>5,2</td>
</tr>
<tr>
<td>Vegen Å</td>
<td>2,6</td>
<td>2,1</td>
<td>10,6</td>
</tr>
</tbody>
</table>
Vegen Å, tilløb til Storå

I Vegen Å er der fra 1995 til 2012 nedlagt fire dambrug, lavet én faunapassage, gennemført fem genslyngninger af vandløbet og foretaget mange udlægninger af gydegrus på en strækning, der blev undersøgt 16 steder i september 2014 (Deacon et al. 2014). Fiskebestanden var domineret af laks og ørreder på alle stationer. Der var naturlig ørredygning fra gydning alle steder og lakseyngel (0+) på 15 af de 16 beforselede stationer. Desuden var der seks andre fiskearter. Tæthedene var på op til 6,4 ørredygel pr. m vandløb henh. 10,6 stk. lakseyngel (tabel 11). 75 % af stationerne var i god økologisk tilstand, og kravet for høj økologisk tilstand var overholdt på 69 % af stationerne.

Fiskeundersøgelse i den genslyngede Kvak Møllebæk med hjælp fra skoleelever (Nielsen 2015a).

Kvak Møllebæk, tilløb til Vejle Å

Projektet, hvor der bl.a. er udlagt gydegrus, blev gennemført for 24 år siden og er blevet fulgt med jævnlige fiskeundersøgelser. I 1991 blev der graven et nyt vandløb med den fulde vandføring uden om en opstemning med en møllesø, der skulle bevares. Den nye bæk er ca. 1 m bred og har et ret stejlt fald på op til 25 promille, men der er indlagt strækninger med et lavere fald på ca. 5 promille til udlægning af gydegrus.

De 24 år har vist, at der altid om efteråret har været 2-6 stk. årsyngel pr. m² af ørred fra gydning og ofte mindst 3-4 stk. yngel (figur 6). Det er langt større tætheder end de 0,8 stk. pr. m², der er fastsat som miljømål for god økologisk tilstand i små øredvandløb og de 1,3 stk., der er målet for høj økologisk tilstand. Det kan derfor konkluderes, at

- Man kan opnå en varig, positiv langtidseffekt af udlægning af gydegrus, hvis det bliver udlagt på en "naturlig" måde. Jo mere naturligt, det nye vandløb etableres, desto større er chancen for, at der kommer en varig positiv effekt.
- At miljømålet for både god og høj økologisk tilstand har været opfyldt i alle årene.
Figur 6

Vejle Å ved Vingsted blev genslynget i 2013.

Fotos: Klaus Balleby og Kaare Manniche Ebert.

Vejle Å ved Vingsted

Det udlagte stenmateriale (sten og gydegrus) bestod primært af materiale, der var indvundet ved sigtning af det jord, der blev gravet ud til det nye forløb. Dvs. at der primært blev udlagt materiale, der naturligt findes på lokaliteten.
Havørrederne brugte allerede strygene til gydning den første vinter, og næste efterår, dvs. i 2014, fandt Vejle Kommune 24 stk. øreedyngel pr. m vandløb. Der var ikke så meget yngel i 2015, hvor der var 6 stk. årsyngel pr. m vandløb (Klaus Balleby, personlig oplysning). Men det er stadig en høj tæthed, som både opfylder miljømålet om god og høj økologisk tilstand i ørredvandløb, der er mindst to meter brede.

5.6. **Konklusion vedr. effekt af forbedring af de fysiske forhold**

Ud over de nævnte restaureringer med udlægning af gydegrus findes der mange andre succesfulde projekter, hvor der er kommet meget yngel af ørred og laks efter udlægning af gydegrus. Det samme gælder for mange andre arter, også af småyr og vandplanter.

Vandløbene er sjældent undersøgt på samme lokalitet før udlægningen af gydegrus, så det kan være vanskeligt at påvise, at der er tale om en fremgang i yngeltæthed m.m. Men man må som udgangspunkt regne med, at der har været mangel på gydegrus og dårlig naturlig produktion af lakse- og ørredyngel, hvis man har fundet det nødvendigt at udlægge gydegrus.

Man kan generelt forvente en væsentlig øgning af yngeltætheden og de wilde bestande, hvis man følger anbefalingerne i DTU Aquas vejledninger (Nielsen & Sivebæk 2013, 2015). Det væsentlige er her:

- At der udlægges gydegrus i den ”rigtige” kornstørrelse
- At gydebankerne anlægges med et ”naturligt” fald med en passende lav vandhastighed
- At gydebankerne etableres så store, at de ikke skyller væk, når fiskene og vandet har flyttet rundt på gydegruset
- At der sikres lav vanddybde hen over gydebankerne, så gydefiskene vil benytte dem, og ynglen kan overleve de første måneder efter klækningen, hvor de søger skjul langs vandløbets bredder.
5.7. **Effekt af fjernelse af rørlægninger**

Fisk og smådyr kan have meget svært ved at passere opstrøms gennem rørlagte strækninger af vandløb, enten pga. styrt, lav vanddybde eller for hurtig vandstrøm. I forhold til at opnå god økologisk tilstand, rør bør fjernes eller lægges om, så fiskene nemt kan svømme igennem.

Fisk som ørreder flytter sig meget i forbindelse med gydningen, og derfor kan der hurtigt komme bestande fra gydning på egnede strækninger opstrøms rørlægninger. Det skete f.eks. i den lille Ibæk, som løber til Vejle Fjord. Her blev 101 meter rørlægning fjernet i 1992, og samme år blev der observeret mange gydende havørreder opstrøms på en strækning, der havde været fisketom i mange år. Året efter var der 1,7 stk. ørredyngel pr. m² opstrøms det tidligere rør (Nielsen 1994), og der har været en tæt bestand lige siden (op til 3,1 stk. yngel pr. m², Christensen 2002, Carøe 2009).

Hvis rørene skal bevares, som f.eks. ved relativt korte rør under vejdæmninger, kan det ofte være nødvendigt at skabe passage ved at hæve vandstanden i røret, så opstrøms passerende fauna kan svømme gennem røret. I sådanne situationer har man tidligere brugt håndsten til at stuve vandet op med stejle stenstryg eller små styrt uden gydemuligheder. Men man bør altid overveje, om man i stedet kan udnytte faldet til at forbedre gyde- og opvækstmulighederne.
5.8. **Effekt af opstemninger.**

Det er almindeligt anerkendt, at opstemningsanlæg i vandløb spærer for fiskenes og faunaens op- og nedstrøms vandringer. Desuden medfører opstemningerne ofte andre ændringer af de naturlige forhold i vandløbet, f.eks. reduceret vandføring pga. bortledning af vand fra vandløbet samt ændring af vandstanden og vandhastigheden opstrøms opstemningen m.m. (figur 7a&b).

![Naturligt vandløb](image)

Figur 7a.

Et naturligt, upåvirket vandløb uden faunaspærringer og med gode faldforhold har lavvandede stryg, varierede bundforhold samt et varieret dyre- og planteliv, ofte med store naturlige bestande af fisk.
Vandløb med opstemning

Figur 7b

Af hensyn til at skabe kontinuitet i vandløbene er der krav i vandplanerne om at "fjerne spærringer", så faunaen kan passere frit rundt i vandløbene. En fjernelse af et opstemningsanlæg med genskabelse af det "naturlige" vandløb vil samtidig sikre, at de naturlige livsbetingelser for dyr og planter genskabes.

I vandplanerne er der dog åbnet mulighed for, at opstemningsanlæg kan bevares, f.eks. af hensyn til at sikre kulturhistoriske interesser. I disse tilfælde fjernes opstemningsanlægget ikke, selv om projektet benævnes "fjernelse af spærring". I disse tilfælde kan man søge tilskud til at etablere stryg med et fald på op til 10 promille (Miljøministeriet 2015). Bestemmelsen gælder i alle vandløb, dvs. både i små vandløb, hvor faldet naturligt kan overstige 10 promille, og i de større vandløb, hvor det naturlige fald højst er på 1-3 promille.
Der er en del eksempler på, at en "fjernelse af en spærring" sker ved at anlægge nye vandløb med unaturligt stejlt fald, såkaldte "omløbsstøvler", ved en bevaret opstemning med det formål, at fiskene og den øvrige fauna skal bruge dem som "omfartsvej" på deres vandringer op og ned i vandløbene (figur 8). Men man skal være opmærksom på, at naturen ikke får det fulde udbytte af at "fjerne" en spærring, idet det nye vandløb normalt er anlagt med et "unaturligt" forløb og fald, der ikke tillader gydning. Man kan dog ofte etablere gydebanken på delstrækninger med et lavere fald som det f.eks. er sket i Kvak Møllebæk (afsnit 5.5.2, Nielsen & Sivebæk 2015).

En særlig og ofte overset problemstilling er, at mulighederne for nedstrøms passage af vandrefisk ofte er stærkt forringede ved opstemninger, selv hvis der etableres omløb. Problemet forstærkes, hvis vandet fra vandløbet udnyttes til drift af dambrug, turbiner etc., idet nogle fisk følger det vand, der ledes bort. Men selv hvis alt vandet løber gennem en mølledam uden turbineanlæg, er det gennemsnitlige tab af ørredsmolt på ca. 30 % ved hvert mølleanlæg (Aarestrup et al. 2006c). Det skyldes, at smolt har svært ved at finde gennem det stillestående vand og opstuvningszonerne, samt at mange smolt bliver forsinket eller ædt.

Figur 8

Bevarede opstemninger, hvor der er etableret "unaturligt" stejle støvler med en "unaturligt" lille vandføring. Strygene kaldes ofte for "omløb", "omløbsstøvler" eller "støвлomløb".

Disse løsninger bevarer opstuvningszonen uden gydemuligheder, idet fiskene heller ikke kan gyde på de nye etablerede støvler, hvor faldet er for stejlt til gydning og gydegrus.

Desuden er der tab af vandrefisk på op- og nedstrøms vandring, som bl.a. kan have svært ved at finde faunapas sagen pga. lokkevirkningen fra det vand, der ledes uden om "passagen".

Opstemning med stenstøv i mølledam

Opstemning med omløbsstøvler
Hvis fisk fra mange vandløb skal passe over en eller flere opstemninger på vandringerne mellem vandløbere og havet, kan det have en meget stor negativ effekt på bestandene. Det gælder f.eks. i Sæby Åsystemet i Nordjylland, hvor opstemningen ved Sæby Mølle (foto i figur 7b) ligger få hundrede meter fra havet. Alle ørreder fra næsten 100 km vandløb skal passe over mellem mindst to gange i deres liv – dels som smolt, dels som havørreder, der vender tilbage for at gyde. Passageforholdene er meget dårlige, og derfor er de naturlige ørredbestande små eller manglende.

Til hjælp med at afgøre, om et opstemningsanlæg skal bevares eller ej, er der i dette kapitel givet en række eksempler på opstemningernes effekt på fiskefaunaen.

5.9. **Opstuvningszone, ændret vandkvalitet m.m.**

De stryg der i biologisk sammenhæng er, eller har været, mest værdifulde, er ofte ødelagt af opstemninger. Det skyldes, at opstemningerne normalt er anlagt på de vandløbsstrækninger, som har et stort naturligt fald. Opstuvningszonerne opstræms opstemningerne kan være flere kilometer lange i de store vandløb og forårsager, at vandhastigheden falder og vanddybden øges (Aarestrup et al. 2006 a, &b).

Hvis der er lavvandede søer opstrøms opstemningen, f.eks. en vandkraftsø eller et vådområde, kan en øget vandtemperatur i seen og udskylning af alger fra seen ligeledes påvirke vandløbet nedstrøms negativt med øget vandtemperatur, forringet vandkvalitet, nedsat iltindhold m.m. Det forringer livsbe- tingelserne for dyr, planter og fisk nedstrøms sørerne og kan medføre, at de naturligt forekommende vandplanter forsvinder pga. mere uklart vand, samt at livet af smådyr og fisk ændres pga. øget algebefinding, nedsat iltindhold etc.

5.10. **Tab af vandrefisk ved opstemninger**

Opstemningsanlæg er normalt anlagt med det formål at lede vand væk fra vandløbet, så det kan udfyldes til produktion i forbindelse med mølledrift, dambrug eller vandkraft.

Et væsentligt problem ved vandindtag fra vandløb er, at fisk på op- og nedstrøms vandringer følger vandstrømmene og derfor lokkes af det vand, der ledes bort fra vandløbet (Faunapassageudvalget...

En særlig problemstilling, set i relation til vandrefisk, er, at deres muligheder for nedstrøms passage ofte er stærkt forringede ved opstemninger, selv hvis der etableres omløbsstryg (Aarestrup et al. 2006c). Det skyldes primært, at fiskene har svært ved at finde gennem opstuvningszonen, hvor de forsinkes og er i stor risiko for at blive ædt af rovfisk og fugle. Desuden løber der ofte kun en del af åens vandføring i “faunapassagen”, så fiskene ofte “løkker” den forkerte vej med det vand, der løber forbi/uden om faunapassagen.

5.10.1. **Tab ved opstrøms passage**

Omkring 1990 erkendte man, at der altid er fisk på vandring i vandløbene, at de følger hovedvandstrømmen i vandløbene, og at fisketrapper ikke virker ret godt som faunapassager. Derfor blev fisketrapperne ofte erstattet af stryg og omløb med hel eller delvis bevarelse af opstemningen. Dog skete det som regel med et fortsat vandindtag til dambrug, turbineanlæg eller møllesøer.

Siden er der udført mange undersøgelser af opstrøms passage forholdene ved opstemninger og andre menneskeskabte spæringer, herunder ved fisketrapper. Undersøgelserne har entydigt vist,

- at der er store passageproblemer for fiskene og den øvrige fauna, også for nedstrøms trækende ørred- og laksesmolt, blankål etc.
- at passageforholdene som hovedregel er så dårlige, at det er i strid med Vandrammedirektivets krav om kontinuitet i vandløbene. Naturstyrelsen har bl.a. som hovedregel udpeget fisketrapper som faunaspæringer.

5.10.2. **Tab ved nedstrøms passage**
Det gennemsnitlige tab af ørredsmolt ved danske mølledamme, traditionelle dambrug og vandkraftværker er stort (tabel 12), idet der i gennemsnit forsvinder 30-82 % ved et anlæg, afhængig af typen. Tilsvarende gælder for laks og formentlig også andre arter af fisk (Aarestrup et al. 2006c).

Tabel 12
Tabet af ørredsmolt ved forskellige typer opstemningsanlæg, målt som tab pr. anlæg (Aarestrup et al. 2006c)

<table>
<thead>
<tr>
<th>Opstemningsanlæg</th>
<th>Tab af ørredsmolt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mølledam</td>
<td>30 %</td>
</tr>
<tr>
<td>"Gammeldags" dambrug med vandindtag via opstemning</td>
<td>42 %</td>
</tr>
<tr>
<td>Vandkraftanlæg</td>
<td>82 %</td>
</tr>
</tbody>
</table>

Ved dambrug er der konstateret en tydelig sammenhæng mellem smolttabet og den relative indvinding af vand til dambrugsdrift, således at tabet er størst ved relativt stor indvinding (Aarestrup et al. 2007).

Der sker også en betydelig forsinkelse af smolt ved opstemninger. En ørredsmolt er ofte kun fysiologisk tilpasset til saltvand i en periode på 2-3 uger – det såkaldte "smoltvindue". En forsinkelse pga. én eller flere spæringer i et vandsystem kan yderligere betyde, at smolten ikke når i havet i den periode, hvor den er fysiologisk optimalt tilpasset til overgangen til saltvand (Aarestrup et al. 2006c), således at det reelle tab pga. opstemninger faktisk er større end tabet i tabel 12.

Det er heldigvis muligt at forbedre passageforholdene, selv om man fastholder en erhvervsmæssig drift på lokaliteten. F.eks. blev Kongeåens Dambrug ombygget til modeldambrug 3 uden opstemning og vandindtag fra åen. Det resultherede i fri smoltpassage i 2005, dvs. uden smolttab, hvor tabet de forårsagende to år med traditionel dambrugsdrift var på henholdsvis 35 og 58 % (Aarestrup et al. 2007).

Tilsvarende forhold gælder formentlig for turbineanlæg, hvor det gennemsnitlige tab for anlæg i drift er på 82 % (Koed et al. 2004).

DTU Aqua anbefaler, at man nøje overvejer problemstillingen med et evt. tab af nedstrøms trækkende fisk inden valg af løsningsforslag, idet man ofte fokuserer mest på, hvordan man kan skabe passage for opstrøms trækkende fisk. Hvis man undlader dette, risikerer man store tab af nedtrækkende smolt og andre vandrefisk, selv om man "fjerner" en spærring med bevarelse af en opstemning og anlæg af et omløbsanslag.

5.11. **Eksempler på effekten af at fjerne opstemninger**

Nu er en enkelt opstemning i Gudenåen ved Vilholt og de fleste dambrugsopstemninger i Villestrup Å og Omme Å fjernet. Det naturlige fald i vandløbene er genskabt med fri faunapassage, og ørredbestandene er på kort tid øget markant alle steder. Se mere i de næste afsnit:

5.11.1. Syv opstemninger i Omme Å, tiløb til Skjern Å

Fiskebestanden blev undersøgt på to strækninger i oktober 2009 (Iversen 2009). Der var da kommet en stor naturlig bestand af ørred og stalling, bl.a. blev der på et styr fundet 8,6 vilde ørreder pr. m vandløb, hvoraf 90 % var yngel. Det er langt flere ørreder end kravet i miljømålene for god og høj økologisk tilstand i ørredvandløb. Se evt. konklusionen på undersøgelsen i boks 1.

Boks 1: Uddrag af en rapport om effektundersøgelser efter genslyngning af Omme Å med fjernelse af 7 dambrugsopstemninger og udlægning af gydegrus (Iversen 2009).

Stallingen har etableret sig fint på den uberørte åstrækning med 26 stallinger pr. 100 meter, og tæthederne af stalling på de genslyngede og restaurerede strækninger nedstrøms Farre og på strækningen Grønbjerg til Langelund er endnu højere, hhv. 38 og 46 stallinger pr. 100 meter. Stallingtætheder af en størrelse man, så vidt vides, ikke finder andre steder Skjern Å-systemet i dag.

Ørredbestanden i Omme Å blev undersøgt ved bestandsanalyser på fire etablerede grusstryg. På et stort styr ved Grønbjerg blev der fundet 8,6 vilde ørreder pr. meter vandløb, og 90 % af ørrederne var yngel. Der er en ørredtæthed som fortæller, at både gyde- og opvækstforhold for laksefiskene, samt vandkvaliteten i åen, er i top. Undersøgelsen viste også, at de laks som blev udsat i Omme Å på strækningen fra Grønbjerg til nedstrøms Langelund i foråret 2009, klarer sig fint.

Derudover var det positivt, at der blev fanget seks havørreder i øvre Omme Å, fisk som alle har force-ret de tre opstemninger ved Juellingsholm, Møbjerg Dambrug og Filskov Dambrug i Billund Kommune. At der trods disse spæringer alligevel kommer enkelte havørreder op i øvre Omme Å, giver forventninger om en eksplosion i antallet af store laks og havørreder i Omme Å, når de tre resterende spæringer fjernes, og der kommer fri passage for vandrefiskene til de store genetablerede gyde- og opvækstområder i Vejle Kommune.
5.11.2. **Syv opstemninger i Villestrup Å ved Mariager Fjord**

Naturstyrelsen opkøbte og fjernede alle dambrugene og deres opstemninger i perioden 2008-2010, så de naturlige faldforhold blev genskabt med fri faunapassage og gode gydemuligheder. Det gav hurtigt resultat i form af en kraftig øgning i den naturlige ørredbestand:

Figur 9a
Den naturlige ørredbestand i Villestrup Å ved Brøndbjerg 1982-2015.

Data fra Thorsten Møller Olesen og Bjørn Howe Jessen, Naturstyrelsen

Figur 9b

Data fra Kim Aarestrup, DTU Aqua og Thorsten Møller Olesen

5.11.3. **Opstemningen ved Vilholt Mølle, Gudenå**

En række undersøgelser i Gudenåen har dokumenteret, at man kan genskabe en god fiskebestand i en tidligere opstuvningszone ved at fjerne opstemningen og genskabe de naturlige forhold. Da Naturstyrelsen fjerne opstemningen ved Vilholt Mølle i 2008, faldt vandstanden ved Voervadsbro, der ligger ca. 1,5 km opstrøms møllen. Den naturlige strømhmastighed blev genskabt, og de naturlige gydebanker blev skyllet rene for aflejret sand. Ørrederne begyndte straks at gyde på strygene, og året efter var der over 10 stk. yngel pr. m vandløb (figur 10a). Nu har bestanden stabiliseret sig på ca. 4 stk. ørredyngel pr. m vandløb, hvilket overstiger kravene til god og høj økologisk tilstand i store ørredvandløb.

Det er værd at bemærke, at der ikke er udlagt en eneste sten ved Voervadsbro – den positive effekt er udelukkende opnået ved at genskabe fri passage længere nedstrøms og sænke vandstanden ved at fjerne en opstemning 1½ km væk. Uden lav vandstand ville gydebankerne i den tidligere opstuvningszone ikke have virket, og ynglen ville ikke have kunnet overleve.

Figur 10a

Der har nu i syv år været en stor naturlig ørredbestand i den tidligere opstuvningszone ved Voervadsbro, 1½ km opstrøms Vilholt Mølle. Bestanden er 2½ gange større end miljømålet for ørredvandløb med god økologisk tilstand (Nielsen 2015b)
En afledt effekt af at fjerne opstemningen ved Vilholt Mølle og genskabe en god ørredbestand opstrøms møllen er, at bestanden nedstrøms møllen også blev større, allerede tre år efter fjernelsen af opstemningen (figur 10b).

Det skyldes, at der nu er flere gydefisk i åen. Mange af ørredungfiskene fra Voervadsbro udvandrer som smolt til Mossø som etårfsfisk, hvor de vokser op som søørreder og vender tilbage for at gyde i Gudenåen. Den første stor årgang fra Voervadsbro er derfor udvandret til Mossø i foråret 2010, og nogle har formentlig gydt nedstrøms møllen allerede samme efterår.

De sidste fem års undersøgelser har således entydigt vist, at det også kan have stor effekt andre steder i et vandsystem, at man fjerne en enkelt opstemning. Det er værd at bemærke, at hvis man i stedet havde bevaret opstemningen og bygget et stejlt stenstryg som fiskepassage (som vist i figur 8), ville ørredbestanden ikke være blevet forbedret ved Voervadsbro og formentlig heller ikke nedstrøms den tidligere mølle.

Figur 10b

5.12. Konklusion vedr. fjernelse af spæringer ved opstemninger

Hvis man vil sikre store naturlige bestande af vildfisk i vandløb med opstemningsanlæg, bør man gennemføre "optimale" løsninger som ved turbineanlægget ved Vilholt i Gudenåen samt dambrugene i Omme Å, Villestrup Å og Vegen Å. Her har man fjernet opstemningen og opstuvningszonen. Vandløbet er genskabt med naturlig vandføring, gydestryg og varierede forhold for et naturligt liv af planter og dyr. Projekterne har desuden skabt fri op- og nedstrøms passagemulighed for alle andre arter, der som led i deres livscyklus vandrer op- og nedstrøms mellem vandløbene og havet.

I forhold til at opnå de bedste forhold for vildfisk anbefales det at fjerne opstemninger frem for at etablere stenstryg med unaturligt fald og unaturligt lille vandføring. Ellers vil fiskene ofte have vanskeligt ved at finde gennem "passagerne" på deres op- og nedstrøms vandringer og kan ikke gyde i stenstrygene.

Hvis det på ingen måde kan lade sig gøre at fjerne opstuvningszonen, bør man etablere et nyt vandløb, et omløbsstryg, uden om opstemningen og opstuvningszonen, men med fuld vandføring og et
fald, der så vidt muligt svarer til de naturlige, oprindelige faldforhold (Nielsen & Sivebæk 2013). Herved kan man ofte få de fleste fisk til at følge med vandet uden om opstemningen, så der ikke sker væsentlige tab af vandrefisk.

6. Forslag til model for prioritering af projekter

Et valg af løsningsforslag for en vandindsats kan som beskrevet i dette notat forventes at påvirke bestandene af ørreder og/eller andre naturligt forekommende vandrefisk som f.eks. laks og lampretter væsentligt, både i positiv og negativ retning. Ørred og laks er desuden måleenhed i forhold til det så-kaldte "ørredindeks DFFVø", der anvendes til at bedømme den økologiske tilstand i vandløb, hvor de forekommer naturligt.

Vandløbene er også vigtige som opvækstvand for ål, og ålen har stor økonomisk værdi. Den gyder dog i saltvand og er ikke nærmere omtalt i dette notat, som fokuserer på arter, der kun gyder i vandløb.

DTU Aqua kan anbefale, at man lader nøgletallene for vandløbenes betydning som produktionsområder for ørred indgå i vurderingen af, hvordan man skal prioritere valget af løsningsforslag på en udpeget lokalitet. Dvs. i hvilket omfang valget af løsningsforslag på en lokalitet kan få betydning for fiskebestandene i vandsystemet, herunder via smolttab ved opstemninger, vådområder etc.

Andre arter af vandrefisk, der gyder i vandløb og lever en del af livet i havet, bør også inddrages i vurderingen inden valg af løsningsforslag. Det gælder f.eks. laksen, hvor bestandene er på vej frem efter en række miljøforbedringsindsatser;

- I Storåsystemet er der i 2015 fanget mange laks på trods af, at to tredjedele af vandsystemet er spærret for laksens vandringer. Eksemplerne i afsnit 5.5.2 viser, at der er gode muligheder for et særligt godt og forbedret laksefiskeri, hvis de naturlige bestande af laks i de enkelte vandløb i vandsystemet øges.

I enkeltsager kan vi derfor foreslå, at man principielt inddeler lokaliteterne i to typer, som gradueres efter hvor stor en procentdel af vandsystemet, der ligger opstrøms den udpegede lokalitet.

Vores forslag gælder alle typer af projekter, der kan påvirke vandløbenes naturlige fiskebestande, dvs. både rørægningsløb, opstemningsanlæg, vådområder og andet, der har væsentlig betydning for vandløbenes naturlige fiskebestande.
Forslag til prioriteringsprincip af projekter for vandindsats i vandløb:

- **Prioritering 1:** Hvis en betydelig del af det samlede vandsystem, der er egnet for vandrefisk, ligger opstrøms et projektområde (f.eks. mange km vandløb med et godt fald og strygd), prioriteres vandrefiskenes krav højt ved f.eks. at undgå smolttab. Det medfører, at man ikke bør prioritere at bevare en opstemning eller at etablere et vådområde, hvis det kan forventes at medføre væsentlige tab af vandrefisk fra vandsystemets totale produkti-
on.

- **Prioritering 2:** Hvis en mindre del af det samlede vandsystem ligger opstrøms et projektområde, kan man som udgangspunkt prioritere andre interesser højere end vandrefiske-
ne. Dette skal ses som et kompromisforslag i retning af at sikre de kulturhistoriske eller andre interesser, samtidig med at bestandene af vandrefisk i vandsystemet ikke forringes, men bevares eller ophjælpes på anden måde.

Vurderingen af, hvorvidt "en betydelig" eller "en mindre" del af det samlede vandsystem er egnet for vandrefisk opstrøms et projektområde bør bero på en specifik fiskefaglig vurdering i hvert enkelt tilfæl-
de.

Eksempel, prioritering 1
Villestrup Å er et godt eksempel på en prioritering 1, idet Naturstyrelsen fjernede en række opstem-
ninger for at prioritere fiskene og naturen. Antallet af smolt blev 15-doblet på 11 år, og DTU Aquas be-
regninger for smolttudtrækket i 2015 viser, at der via rekreativt fiskeri vil blive hjembragt ca. 8.300 af disse smolt som havørreder over mindstemålet.

Den årlige beregnede fangst på 8.300 hjembragte havørreder (+ genudsatte fisk) har en stor socio-
økonomisk værdi for samfundet, og prioriteringen af at opkøbe og nedlægge opstemningerne er i tråd
med vores forslag til en prioritering 1.

Eksempel, prioritering 1
Vådområderne Knabberup Sø og Kongens Kær i Vejle Ådal et tilsvarende gode eksempler på en prio-
ritering i forhold til prioritering 1, hvor man anlagde søer til rensning af kvælstof, men prioriterede
vandsystemets naturlige bestand af vandrefisk. Vådområdet i Omme Å, som renser kvælstof via peri-
odevice oversvømmelser af ådalen, er også et godt eksempel, idet der oven i købet nu produceres fle-
re fisk på de gydestryg, der er udlagt som led i projektet.

Eksempel, prioritering 2
Kvak Møllebæk ved Vejle er kun få km lang og er en del af et stort vandsystem. Ved projekteringen
var der et stort ønske om at bevare møllesøen samtidig med, at der skulle skabes faunapassage. Der-
for blev det valgt at bevare opstemningen. Men det blev samtidig prioriteret at udforme omløbet uden
om møllesøen som et naturligt vandløb med gydeområder for ørred på trods af det stærke fald. Desu-
den blev hele bækens vandføring ledt uden om den bevarede møllesø, hvilket har givet fri faunapas-
sage i bækken. 24 års undersøgelser og ingen klager fra lodsejere m.m. har vist, at både natur og
menneskelige interesser er blevet tilgodeset.
Eksempler på opstemningsanlæg med en stor del af vandsystemet opstrøms et projektområde, som vi foreslår som prioritering 1, kan være:

- Sæby mølle, Sæby Å (allerede afklaret med Kulturstyrelsen og det lokale museum)
- Jedsted Mølle ved Kongeå
- Bindeslev Mølle, Uggerby Å
- Holstebro Vandkraftværk, Storå
- Tangeværket og Vestbirk Vandkraftværk, Gudenå (Vestbirk spærre for søøredernes vanddringer til 200 km vandløb fra Søhøjlandets søer)
- Opstemningerne i Odense, Odense Å
- "Rind Å-forvirringen", Skjern Å Systemet
- Holløse Mølle, Suså

Listen er ikke komplet, kun tænkt som inspiration til drøftelser med kulturhistorikere etc. Men her vil valget af løsningsforslag påvirke overlevelsen af smolt fra store dele af vandsystemet væsentligt, dvs. fra mange kilometer vandløb.

Det samme gælder nuværende eller planlagte vådområdeprojekter, der har eller kan få stor negativ betydning for bestandene af vandfisk, idet hele åens vandføring ledes gennem vådområdet:

- Egå Engsø
- Årslev Engsø
- Tude Å (planlagt projekt)

7. Konklusion og anbefalinger

Valget af løsningsforslag ved en vandindsats kan have særdeles stor betydning for bestandene af vandfisk som f. eks. ørred og laks. Genskabelse af naturlige forhold i vandløbet kan hurtigt genskabe store, naturlige bestande af disse.

I mange projekter har man imidlertid prioriteret andre forhold end genskabelse af naturlige forhold højst, f.eks. hensyntagen til kulturhistoriske interesser, lokale lodsejerønsker, rensning af kvælstof etc. Derfor er fiskebestandene sjældent blevet væsentligt bedre, og i visse tilfælde, som ved vådområdeprojekter med søer direkte i vandløb, er de naturlige havørredbestande blevet reduceret voldsomt og er stort set forsvundet.

Overordnet er konklusionerne:

- Hvis man vælger at nedlægge en opstemning og genskabe naturlige forhold i åen med gydestryg, er der gode muligheder for at der bliver genetableret sunde fiskebestande samt et naturligt varieret dyre- og planteliv.
- Hvis man vælger at bevare en opstemning og etablerer et stenstryg, vil ørreden og andre naturlige danske fiskearter som regel hverken kunne gyde i opstuvningszonen eller i stryget, og der er stor risiko for betydelige tab af vandfisk, der skal finde forbi lokaliteten. Desuden vil mange andre arter, der naturligt hører hjemme i området, ikke kunne klare sig.
Hvis man ved valg af vådområde kan genslyngne åen og gensekabe naturlige, periodevise oversvømmelser af ådalen, kan man som i Omme Å gensekabe en god fiskebestand uden tab af vandrefisk. Dvs. at vådområdeprojektet renser for næringsstoffer samtidig med, at fiskebestandene og mulighederne for fiskeri efter f.eks. havørred forbedres i vandsystemet og langs kysterne.

Hvis man vælger at etablere et vådområde som en sø direkte i et vandløb (som i Egå Engsø og Årslev Engsø ved Aarhus + andre steder), vil man med stor sandsynlighed miste de fleste smolt af ørred og evt. laks, når de skal forsøge at finde gennem søen på de årlige vandringer. Der er stor risiko for at de naturlige bestande af vandrefisk forsvinder.

Hvis man vælger at etablere et vådområde som en sø ved siden af vandløbet og bortleder en mindre del af åens vandføring til søen (f.eks. som i de to søer i Vejle Ådal), kan man etablere vandindtag- og udløb, der ikke påvirker vandrefiskene. På den måde kan man sikre en vis rensening af næringsstoffer fra åvandet uden at ødelægge de naturlige bestande af vandrefisk.

For at sikre valg af løsningsforslag, der tilgodeser de wilde og naturlige fiskebestande samt muligheden for fiskeri, anbefaler DTU Aqua, at man i enkeltsager overvejer vandløbenes betydning som produktionsområder for vildfisk og hvor stor en del af vandsystemet, der ligger opstrøms projektområdet. Det kan have afgørende betydning i vandsystemer, hvor der ligger en opstemning nederst i systemet (f.eks. ved Sæby Vandmølle), eller man arbejder med planer om at etablere vådområder nær vandløbenes udløb i havet (som f.eks. i Tude Å på Sjælland).

Hvis man vil sikre bestande af vildfisk i vandsystemer, hvor der allerede er gennemført projekter, eller hvis man vil prioritere muligheden for et forbedret fiskeri, kan det også anbefales at genoverveje eksisterende projekter, og om det kan lade sig gøre at ændre disse, så de tilgodeser vandrefiskene, f.eks. ved Årslev Engsø og Egå Engsø ved Aarhus.
8. Referencer

Nielsen, J. (2004a): Ørredbestanden i Bygholm Å. Artikel i nyhedsbrev nr. 12 fra foreningen Horsens Ren Fjord, s. 342-344.

