Continuous Variable Quantum Key Distribution with a Noisy Laser

Jacobsen, Christian Scheffmann; Gehring, Tobias; Andersen, Ulrik Lund

Published in:
Entropy

Link to article, DOI:
10.3390/e17074654
10.3390/e18100373

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Correction
Entropy 2015, 17, 4654–4663

Christian S. Jacobsen, Tobias Gehring and Ulrik L. Andersen *
Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kongens Lyngby, Denmark; chrsch@fysik.dtu.dk (C.S.J.); tobias.gehring@fysik.dtu.dk (T.G.)
* Correspondence: ulrik.andersen@fysik.dtu.dk

Academic Editors: Stefano Pirandola and Kevin H. Knuth
Received: 8 October 2016; Accepted: 14 October 2016; Published: 19 October 2016

This is a correction to the manuscript [1]. Due to misprints in Equations (31) and (43) of [2], the results in Figures 2a and 4a in [1] were incorrectly calculated. In Equation (31) of [2], the matrix \(C \) reads,

\[
C = \begin{bmatrix}
\sqrt{T(W^2 - 1)} \left(2 - \frac{V}{TV + W - TW} \right) & 0 \\
0 & -\sqrt{T(W^2 - 1)}
\end{bmatrix}, \tag{1}
\]

but it should in fact read,

\[
C = \begin{bmatrix}
\sqrt{T(W^2 - 1)} \left(\frac{V}{TV + W - TW} \right) & 0 \\
0 & -\sqrt{T(W^2 - 1)}
\end{bmatrix}. \tag{2}
\]

This misprint propagated such that in Equation (43) of [2], the parameter \(c \) reads,

\[
c = \sqrt{W^2 - 1} \left(2 - \frac{1 + V}{1 + TV + (1 - T)W} \right), \tag{3}
\]

when it should have been

\[
c = \sqrt{W^2 - 1} \left(\frac{1 + V}{1 + TV + (1 - T)W} \right). \tag{4}
\]

This errata contains the mentioned plots where the revised expressions have been applied, such that the replacement for Figure 2 in [1] is shown in Figure 1, and Figure 4 in [1] is shown in Figure 2. We keep the corresponding (b) panels for comparison. We note that the corrections only reinforce the conclusions of our paper, which are that reverse reconciliation is vulnerable to preparation noise, while direct reconciliation is not.
Figure 1. Contour plots of the secure key generation rate for varying preparation noise in shot-noise units (SNUs) and transmission T for (a) reverse reconciliation and (b) direct reconciliation. The error reconciliation efficiency was set to $\beta = 95\%$, the modulation variance was 32 SNUs, and the channel excess noise 0.11. The dashed lines indicate the minimal possible transmission of a channel where a positive secret key rate can still be obtained, in the ideal case for $\beta = 1$, no channel excess noise, and in the limit of high modulation variance. (a) For no preparation noise ($\kappa = 0$), the rate decreases asymptotically to zero as the transmission approaches zero. When the preparation noise increases, the security of reverse reconciliation is quickly compromised, to the point where almost unity transmission is required to achieve security. (b) For heterodyne detection and no preparation noise, the rate goes to zero at about 79% transmission, due to the extra unit of vacuum introduced by heterodyne detection. The plot shows the robustness of direct reconciliation to preparation noise.

Figure 2. Measured data and theory curves for different levels of preparation noise using (a) reverse reconciliation and (b) direct reconciliation in the post-processing. Error reconciliation efficiency $\beta = 95\%$. Due to our simulation of losses (see main text), the error bars on the channel loss are negligibly small, and thus not shown in the figure.

Acknowledgments: The authors would like to thank Carlo Ottaviani and Panagiotis Papanastasiou for finding this error.

Conflicts of Interest: The authors declare no conflict of interest.
References

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).