Measuring community-wide conjugative plasmid permissiveness

Smets, Barth F.; Klümper, Uli; Dechesne, Arnaud; Riber, Leise; Brandt, K. K.; Gülay, Arda; Sørensen, S. J.

Published in: International Society for Plasmid Biology Plasmid Biology 2016

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
International Society for Plasmid Biology

Plasmid Biology 2016

Clare College, Cambridge

Sunday 18th - Friday 23rd September 2016

Organisers: David Summers, Nicholas Thomson and Chris Thomas

<table>
<thead>
<tr>
<th>Index</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme</td>
<td>2-5</td>
</tr>
<tr>
<td>Delegate List</td>
<td>6-8</td>
</tr>
<tr>
<td>Poster Sessions</td>
<td>9-14</td>
</tr>
<tr>
<td>Oral Presentation Abstracts</td>
<td>15-74</td>
</tr>
<tr>
<td>Poster Presentation Abstracts</td>
<td>75-145</td>
</tr>
</tbody>
</table>
Measuring community-wide conjugative plasmid permissiveness

Smets, B.F.¹, Klümper, U.¹,², Dechesne, A.¹, Riber, L.³, Brandt, K.K.⁴, Gülay, A.¹, Sørensen, S.J.³

¹Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark; ²European Centre for Environment and Human Health, University of Exeter Medical School, Royal Cornwall Hospital, Truro, UK; ³Department of Biology, University of Copenhagen, Copenhagen, Denmark; ⁴Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark

To predict the fate of conjugative plasmids, their transfer and host range in entire complex microbial communities needs to be ascertained and understood: this involves identifying the fraction as well as the identity of the microbial community members that can serve, at least transiently, as recipients of the considered plasmid. We have called this the permissiveness of a microbial community towards a specific plasmid (Musovic et al. 2009). We have developed a cultivation-minimal assay to measure community-wide permissiveness of conjugative plasmids (Klümper et al., 2014): the assay relies on challenging a microbial community with an mCherry red-fluorescently tagged donor strain which carries a target plasmid that, in turn, is tagged with a zygotically-expressed gfp. Conjugation events are subsequently detected as green fluorescent signals via fluorescence microscopy (e.g. CSLM) and transconjugants can be isolated by fluorescence activated cell sorting (FACS).

We investigated the transfer range of IncP-type broad host range plasmids to a soil bacterial community. Conjugation events were detected at approx. 1 in 10^4 to 10^5 of the initial soil recipient cells and transconjugants belonged to 11 different bacterial phyla. We were able to modify the assay further to assess whether exposure to metals (Cu, Cd, Ni, Zn) at concentrations causing partial growth inhibition, modulates community permissiveness (Klümper et al. 2016). For certain Operational Taxonomic Units (OTUs), stress increased or decreased plasmid permissiveness by more than 1000-fold and this response was typically correlated across different metals and doses. The response to some stresses was, in addition, phylogenetically conserved.

Our approaches can be applied to further our understanding of the ecology of broad-host range plasmids in various microbial communities and examine the effect of environmental conditions.

