Generator bearing defect development based on discrete fault stages

Skrimpas, Georgios Alexandros; Dragiev, Ivaylo G.; Nezeritis, Nikolaos; Marhadi, Kun Saptohartyadi; Holbøll, Joachim

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Generator bearing defect development based on discrete fault stages

Alexandros Skrimpas
alexandros.skrimpas@bkvibro.com
Ivaylo Dragiev
ivaylo.dragiev@bkvibro.com
Nikolaos Nezeritis
s152297@student.dtu.dk
Kun Marhadi
kun.marhadi@bkvibro.com
Joachim Holboell
jh@elektro.dtu.dk

Introduction

CMS is employed by OEM and O&O as part of the condition based maintenance strategy, both in onshore and offshore wind farms. The main objectives are:

1. Reduce cost of energy (CoE)
2. Increase energy and time availability
3. Optimize maintenance and component replacement

Commonly, vibration-based CMS is applied on monitoring of the main drive-train components and tower oscillations.

Generator bearing monitoring

Monitoring of generator bearings is performed by radially installed accelerometers close to the load zone. A wide variety of faults is detectable, such as:

- subcomponents defects (ball, cage, inner & outer race)
- rotor dynamic faults (imbalance, misalignment, looseness)
- slip ring unit malfunction in DFIGs

Development of bearing faults

Data set consists of:

- 119 bearing defects (mainly BPFI), which have lead to
- 340 alarm reports of various severity.

The main observations are:

- Sev4 → Sev3: 80% of faults are upgraded within 10 months - 60% within 4 months
- Sev3 → Sev2: 80% of faults are upgraded within 4 months - 60% within 2 months
- Sev2 → Sev1: 85% of faults are upgraded within 2 months

Fig. 1: Positioning of accelerometers and main parts of a DFIG

Fig. 2: CDF of time interval for a fault to be upgraded from Severity 4 (lowest) to Severity 3

Fig. 3: CDF of time interval for a fault to be upgraded from Severity 3 to Severity 2

Fig. 4: CDF of time interval for a fault to be upgraded from Severity 2 to Severity 1 (highest)

Severity estimation

B&K Vibro CMS combines an automated alarm generation system with operator interaction in alerting, diagnosing and evaluating the severity of a developing fault. Four discrete severity levels are employed, providing suggestions on the criticality of a fault and lead time to inspection and planning of any required maintenance needs.

<table>
<thead>
<tr>
<th>Severity</th>
<th>Type</th>
<th>Description</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>Severe progressing alarm</td>
<td>Immediate reaction: Operating the turbine has serious risk of functional loss and possible severe consequential damage.</td>
</tr>
<tr>
<td>2</td>
<td>Alert</td>
<td>Considerable progressing alarm</td>
<td>Action as soon as possible. Recommend within 2.4 weeks.</td>
</tr>
<tr>
<td>3</td>
<td>Alert</td>
<td>Progressing alarm</td>
<td>Action when convenient. Recommend within 2.4 months.</td>
</tr>
<tr>
<td>4</td>
<td>Alert</td>
<td>Small or none progressing alarm</td>
<td>No Action Required / No Feedback Required.</td>
</tr>
</tbody>
</table>

Conclusions

- Fault progression is faster as higher severity levels are reached
- Upgrade time is consistent with provided lead time