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IX 

Thesis Structure 

The thesis is structured in seven chapters. Chapter 1 provides a brief introduction to the core 
concepts that form the foundation of this work. Chapter 2 provides a more specific 
introduction to the key materials used in this thesis namely graphene related materials as well 
as a brief overview on how these materials in conjunction with supramolecular moieties have 
been used to construct chemical sensors. The following three chapters describe the work 
carried out in the Ph.D. project. They are structured in such a way that a short introduction to 
relevant previous work or important theory not covered in chapter 1 or 2 is first given, 
followed by synthesis, characterization and functional tests of the materials of presented. 

Chapter 3 describes the work on covalent functionalization of reduced graphene oxide (RGO) 
with crown-ether moieties to produce sensing materials for alkali metals. Chapter 4 describes 
Azido-RGO as a platform material, onto which any chemical sensing components can in 
principle straight forwardly be attached. Chapter 5 describes, how a complex chemical sensor 
moiety TTF-calix[4]pyrrole can be attached to Azido RGO, in order to achieve a surface 
confined electrochemically active sensing system. Chapter 6 summarizes and concludes on 
the produced work. Chapter 7 provide the detailed experimental procedures used in the thesis 
work.  
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Chapter 1 Introduction  

This chapter provides a brief introduction to the concepts essential for the thesis, including 
chemical sensors, nanostructures, and supramolecular chemistry.  

1.1 Chemical Sensors 
Evolutionarily, one of the key factors for survival is the ability to use our human senses to 
observe and react to changes in the environment, from visual to auditory, but also chemical 
sensing. This is why we are capable of detecting more than 10 000 different odorants despite 
humans being primarily visual and underappreciate olfactory sensing26. Likewise, our society 
has a growing appreciation of the importance of chemical detection. From the general public 
to government and industry there is an ever-expanding urge to understand our chemical and 
biological environment1. 

 

Chemicals in general, from toxins to simple ions, have tremendous impact on our bodily 
functions, health and diseases. The detection or monitoring of specific compounds or ions in 
our body therefore offers crucial clues for medical diagnostics2,3. The increase in 
environmental awareness also implies a growing need for adequate detection of chemicals in 
our environment, such as water supply or air quality9,10. Chemical sensors for explosives,27 
and chemical warfare agents28 are also increasingly important in controlling previous 
warzones, air security, and other security risk areas. 

In general, a sensor is a device that can detect and convert an external stimulus into a readable 
output. For example, a motion sensor can detect motion and convert this stimulus into a signal 
such as an alarm or electrical recording. A chemical sensor is a sensor, which can recognize 
a specific chemical and give an analytically useful output signal allowing us to identify and 
possibly quantify this specific compound in a mixture of many compounds.  

A chemical sensor is in itself not a sensing device or an analyser, but rather an essential 
component of such devices. In order to construct an operational device further components 
are required: signal processing unit (detector, amplifier and/or signal transformation), data 
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the oxygen functionalities and water, allowing water to intercalate,137,138 with subsequent 
separation of the sheets in solution. Separation is further helped by electrostatic repulsion, 
due to a net negative charge of GO mainly arising from carboxylic acid edge groups.139  

The exfoliation still needs to be assisted by either sonication or intensive stirring. Sonication 
is a more effective method but it can cause fracturing of GO sheets.130,131 Graphite oxide can 
also be exfoliated in other polar solvents, such as ethylene glycol, DMF, NMP and 
tetrahydrofuran (THF).140 High-speed centrifugation can separate exfoliated GO layers from 
stacked graphite oxide.  

GO is not a defined material like molecules but rather a mixture of materials with different 
sheet size, oxidation level, and specific functional groups on basal plane and edges. This 
depends on a number of parameters some of which cannot be fully controlled, resulting in 
batch-to-batch variations. Detailed studies of GO are therefore problematic due to variation 
in conditions such as heat, oxidant, acid, graphite source and so forth.141  

Dimiev et al.142 discovered that post-reaction work-up also has significant impact on the GO 
product, showing that the normal water work-up effectively changes the reactive properties 
of GO. They performed experiments using organic solvent for the post reaction work-up. The 
resulting solid product was not a grey but a yellow, and in some cases white graphite oxide. 
They hypothesized that epoxides or covalent sulfur species dominate the sp3 hybridized basal 
plane after oxidation of most of the basal planes. These can be hydrolysed to some extent 
under aqueous work-up and thus partially restore sp2 hybridization resulting in an increased 
absorption of light. 

2.3.1 Structure of Graphene Oxide  
The chemical structure of graphite oxide has been debated and studied extensively in the 
scientific community for several decades. Its exceeding complexity stemming from non-
stoichiometry, amorphicity and sample-to-sample variations makes precise characterization 
very difficult. 

Several models of graphite oxide have been proposed throughout the years e.g. by 
Hofmann143, Scholz-Boehm144, and Nakajima-Matsuo145. All of these had regular lattices and 
compositions. Now it is, however, established that the structure of GO is truly amorphous. 
The currently most accepted model was proposed by Lerf and Klinowski146, based on solid-
state NMR spectroscopy of graphite oxide (Figure 13).  
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