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Abstract 11 

This work experimentally studied the single-phase heat transfer and pressure drop 12 

characteristics by using two heat transfer enhancement techniques (micro fin structure 13 

and nanofluids) in multiport minichannel flat tube (MMFT). MMFT consisted of 14 

numerous parallel rectangular minichannels and is widely used in industry as the heat 15 

transfer unit of a heat exchanger. Firstly, the enhanced heat transfer performances by 16 

individually using one enhancement technique were investigated by testing Nusselt 17 

number, friction factor and performance evaluation criterion (PEC). In this section, five 18 

MMFTs with different micro fin numbers (N = 0, 1, 2, 3 and 4) and nanofluids with 19 

three volume concentrations (φ = 0.005%, 0.01% and 0.1%) were used as test sections 20 

and working fluids respectively. Secondly, the experiments using two combined 21 
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enhancement technique were performed. By using conjunctively two enhancement 1 

techniques, Nusselt number increases by up to 158% at about Re = 3600 and the 2 

maximum PEC value can reach 2.0 at Re = 5150. Finally, an optimal heat transfer 3 

scheme was proposed based on test data.  4 

Keywords: multiport minichannel flat tube, heat transfer enhancement, micro fin 5 

structure, nanofluid, PEC 6 
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Nomenclature    

A total wetted area, m2   

C wetted perimeter, m Greek Symbols 

cp specific heat capacity, J/kg K 

d diameter, m α aspect ratio, b/a (0＜α＜1) 

Dh hydraulic diameter, m φ volume concentration 

f friction factor μ dynamic viscosity, Pa•s 

ṁ mass flow rate, kg/s ρ mass density, kg/m3 

H Height, m  

h heat transfer coefficient, W/m2 K 

k thermal conductivity, W/m K Subscripts 

L length, m bf base fluid 

MMFT multiport minichannel flat tube f fluid 

Nu Nusselt number nf nanofluid 

Pe perimeter, m c channel 

PEC performance evaluation criterion fin fin 

Pr Prandtl number in inlet 

ΔP total pressure differential, Pa out outlet 

ΔPfri frictional pressure loss, Pa w wall 

ΔPm singular pressure loss, Pa   

q heat flux, W/m2   

Q heat transfer rate gained by fluid, W   

Re Reynolds number   

T temperature, °C   

x axial distance, m   

W Weight, m   

 8 
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1.  Introduction 1 

With the pioneering work of Tuckerman and Pease [1] in early 1981, concept of 2 

microchannel heat sinks was first demonstrated and potential heat flux removal rate of 3 

the order 1000 W/cm2 for single-phase forced convective cooling in microchannels was 4 

predicted. After that, micro-scale heat transfer in micro/minichannel has become 5 

increasingly popular and been applied in various fields due to their large surface area 6 

to volume ratios and high heat transfer coefficients. Moreover, it is of critical 7 

significance to develop the heat transfer enhancement techniques in micro/minichannel, 8 

confronted fast growing power consumption, energy and materials savings, high heat 9 

flux removal and device miniaturization. In a review of heat transfer in microchannels 10 

presented by Kandlikar et al. [2], it states that enhancing heat transfer in microchannels 11 

is of critical importance in successful development of microscale thermal devices. The 12 

heat transfer coefficient needs to be further increased, while dramatic reductions in 13 

pressure drop are warranted. 14 

Wu and Sundén [3] performed a state-of-the-art overview of the most recent single-15 

phase flow enhancement techniques, where microfins and additives were summarized 16 

as two key approaches to improve single-phase thermal performance in 17 

micro/minichannels. It was concluded that micro/minichannels within interrupted 18 

microfins are very promising for high heat-flux dissipation. Engineered fluids with 19 

additives, very popular in research during the last ten years, maybe an efficient way to 20 

significantly improve the thermal performance without large pressure drop penalty. For 21 

microfin structure, many literatures have proved that this technique can significantly 22 
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enhance heat transfer performance [4-7]. Lee et al. [8] performed an experimental 1 

investigation into enhancing heat transfer by employing sectional oblique fins in 2 

microchannel heat sink. The results found that heat transfer performance of the 3 

enhanced microchannel is greatly augmented and when the Reynolds number is 4 

increased beyond 600, heat transfer enhancement reaches 2.2. Meanwhile, nanofluid as 5 

the most common product of particle additives also shows great ability to improve the 6 

thermal performance in micro/minichannel [9-11]. Ho et al. [12] experimentally 7 

investigated the forced convective cooling performance of a copper microchannel heat 8 

sink with Al2O3-water nanofluid as the coolant. For the largest flow rate tested for the 9 

nanofluid of 1 vol.%, the average heat transfer coefficient increased by about 70% 10 

compared with that with water. 11 

Based on above research results, in order to achieve the better heat transfer 12 

performance, the combined effects of micro fin structure and nanofluids on the heat 13 

transfer enhancement in the microchannel are worth to be expected. However, the 14 

enhanced heat transfers using micro fins and nanofluids often accompany complicated 15 

mechanism, especially for nanofluids. As concluded in Ref. [13], low weight 16 

percentages of nanoparticles seem to provide the best performance. The mechanisms 17 

for enhanced lubrication performance are manifold and depend on the material structure 18 

of the nanoparticles. Moreover, in the literatures about single-phase flow heat transfer 19 

of nanofluid in smooth micro/minichannel, some novel phenomena have been found 20 

including the delay of laminar-turbulent transition [14] and discrete precipitation of 21 

agglomerated nanoparticles in the channel [15]. Therefore, applicability that using 22 
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nanofluids in micro/minichannel with micro fin to enhance heat transfer should be 1 

further studied. Furthermore, from the literature survey, it can be found that the 2 

experimental investigations combining micro fin and nanofluids are much less 3 

compared with those just using one enhancement technique. Therefore, more 4 

investigations regarding the research of combined these two enhancement techniques 5 

should be performed, which have significance to further study the comprehensive 6 

strengthening effect and design the optimal enhanced heat exchange scheme.        7 

Few research regarding flow and heat transfer characteristics of nanofluid in 8 

micro/minichannel with micro fin structure have been presented in the open literatures. 9 

Aliabadi et al. [16] performed an experimental assessment of the copper–water 10 

nanofluid flow through seven plate-fin channels. It was found that the best thermal–11 

hydraulic performance is obtained by the vortex in comparison with the plain one 12 

generator. Meanwhile, the use of nanofluid in this channel had more benefit at the lower 13 

flow rates and high nanoparticles weight fractions. Roshani et al. [17] investigated 14 

experimentally the hydrodynamic and thermal performance of a miniature plate pin-15 

finned heat sink by utilizing two widely used nanofluids, Al2O3–water and TiO2–water. 16 

The results found that although 15% and 30% increase in the pumping power for the 17 

volume concentration of 2% Al2O3–water and TiO2–water nanofluids, respectively, the 18 

average heat transfer coefficients increased by 16% and 14% and the thermal resistance 19 

decreased by 17% and 14% for each nanofluid. Eiamsa-ard and Wongcharee [18] 20 

conducted an experimental research to study the effect of combined heat transfer 21 

enhancement techniques (dual twisted-tapes, a micro-fin tube as well as nanofluids) on 22 
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heat transfer, friction factor and thermal performance factor. The test results indicated 1 

that the beneficial effect for the energy saving by the uses of the combined techniques, 2 

especially at low Reynolds number. Duangthongsuk and Wongwises [19] reported an 3 

experimental investigation into the thermal performance and pressure drop 4 

characteristics of nanofluid-cooled heat sinks with miniature circular-fin and square-fin 5 

structures. The experimental results indicated that the heat transfer coefficient increased 6 

with increasing Reynolds numbers and particle concentrations. The miniature circular-7 

fin gave greater heat transfer performance than that of the square-fin by about 6–9%. 8 

From the current research which show the combined effects of micro fin structure and 9 

nanofluids on the heat transfer enhancement, it could be found that a comprehensive 10 

performance factor that simultaneously considers the improvements of heat transfer and 11 

pressure drop was calculated in the most studies. However, not all the results of 12 

performance factor could indicate that combination of two enhancement techniques 13 

have positive effects to enhance heat transfer performance. This phenomenon illustrates 14 

again the necessity and urgency of research in this field.  15 

In this study, one type of multiport minichannel flat tube (MMFT) was used as the 16 

test section. MMFTs are widely applied in various fields as a heat exchanger unit due 17 

to the efficient heat transfer performance. Moreover, one type of continuous fin 18 

structure along axial direction (two-dimensional fin) in micro/minichannel also was 19 

used in this study. This type of fin structure can be fabricated by heat extrusion with 20 

MMFT at one time, which is a much simpler and more low-cost technique compared 21 

with those of the staggered fin array (three-dimensional fin) which are investigated in 22 
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most literatures. An experimental investigation of single-phase convection of TiO2-1 

water nanofluid in MMFTs with different fin numbers was presented in this paper, 2 

which aims to study whether combination of continuous fin structure and TiO2-water 3 

nanofluids can further improve heat transfer performance relative to just using one of 4 

enhancement techniques. Finally, an optimal heat transfer scheme would be proposed. 5 

 6 

2.  MMFT and Nanofluid 7 

2.1 MMFT 8 
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Fig. 1 The cross-section of MMFT 10 

In this study, five aluminum MMFTs with different fin numbers were fabricated and 11 

used as test sections, which are defined as sample 1, sample 2, sample 3, sample 4 and 12 

sample 5 respectively. Taking sample 4 as an example, Fig. 1a shows the cross-section 13 
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of MMFT. Five MMFTs are all composed of 11 parallel and independent square 1 

minichannels. Moreover, except for the fin number, five MMFT have same other 2 

parameters, including both dimension and shape of each square minichannel and fin 3 

structure. Fig. 1b illustrates the schematic drawing of an independent square 4 

minichannels with micro fin structure. The height and weight of channel Hc and Wc 5 

both are 2 mm, while height of fin Hf and bottom width Wf of fin are 0.24 mm and 0.28 6 

mm respectively. Fig.1c presents a scanning electron microscopy (SEM) photograph of 7 

fins for Sample 2-5. As shown in figures, fins are distributed symmetrically at the upper 8 

and lower internal surfaces of each minichannel and fabricated continuously along axial 9 

direction, and thereby can be considered as two-dimensional structure. Fin numbers of 10 

Sample 1-5 are 0, 2, 4, 6 and 8 respectively. Therefore, sample 1 is a smooth tube 11 

without fin structure, and the experimental results using this tube as test section and 12 

water as working fluid can not only verify the integrity of the experimental facility but 13 

also provide baseline information to compare the improvement of heat transfer 14 

performance using different enhancement techniques.  15 

2.2 Nanofluid 16 

TiO2-water nanofluids with 0.005%, 0.01% and 0.1% volume concentrations were 17 

prepared by two-step method in this study. The production method of nanofluids is 18 

characterized by the following steps: firstly, adding TiO2 nanoparticles with particle 19 

diameter dp = 10 nm into base fluid, water. Cetyl trimethyl ammonium bromide (CTAB), 20 

a dispersant with mass that is 0.2 times higher than that of the nanoparticles, was then 21 

dispersed in the water. Finally, the solid-liquid mixture was oscillated in an ultrasonic 22 
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washer for 1 h and then allowed stand for another hour. The final step was repeated but 1 

oscillation was instead conducted for 3-5 h. Mixtures with higher volume concentration 2 

required longer oscillation time. 3 

In order to investigate particle distribution and effective particle size in the 4 

suspensions, scanning electron microscopy (SEM) and dynamic light scattering (DLS) 5 

were adopted respectively for nanofluids with different volume concentrations. Taking 6 

0.01% nanofluid as an example, Fig. 2a and Fig. 2b show SEM image and particle size 7 

distribution of 0.01% TiO2-water nanofluid respectively. From Fig. 2a, it can be found 8 

that nanoparticles distribute uniformly in the suspensions and particle size is about 50 9 

nm, which is consistent with the result obtained by DLS measurement and much bigger 10 

than 10 nm specified by the supplier. Moreover, it should be noted that the test results 11 

reveal no significant difference in effective particle size among nanofluids with 12 

different volume concentrations.  13 

500nm

100nm

(a) 

30 40 50 60 70 80
0

10

20

30

Size (nm)

F
ra

ct
io

n
 o

f 
p
ar

ti
cl

es
 (

%
)

 

 

(b)
14 

Fig. 2 (a) SEM image and (b) DLS measurement of effective particle size (0.01% TiO2-water 15 

nanofluid) 16 
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All the thermophysical properties of nanofluids were calculated or measured to be 1 

used in the data reduction. The effective density and specific heat of the nanofluid are 2 

calculated by 3 

( ) (1 ) ( ) ( )nf bf pT T T            (1) 4 

,

( ) ( ) (1 )( ) ( )

( )

p p p bf

p nf

nf

c T c T
c

T

   



  
      (2) 5 

The effective thermal conductivity of nanofluids were measured by using a transient 6 

hot wire method under different temperatures and compared with the theoretical values 7 

calculated with the model of Yu and Choi [20] and Kleinstreuer and Feng correlation 8 

[21]. In this study, the measurement data of thermal conductivity are reasonably 9 

correlated with the theoretical values from Kleinstreuer and Feng correlation [21]. 10 

Taking 0.1% TiO2-water nanofluid as an example, Fig. 3 shows the comparisons of the 11 

measurement values and theoretical values under different temperatures. It can be found 12 

that the relative errors between these two values are about 1%, which indicates that 13 

model of Kleinstreuer and Feng correlation can [21] be used to predict the effective 14 

thermal conductivity of TiO2-water nanofluids in this study. 15 
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Fig. 3. Effective thermal conductivity of 0.1% TiO2-water nanofluid (error bar ±1%) 1 

The effective viscosity of the nanofluids was measured using a rotating viscometer 2 

and the relative viscosity of the nanofluids at 20 °C is presented in Fig. 4, along with 3 

the well-known Batchelor correlation [22]  4 

2(1 2.5 6.25 )nf bf                            (3) 5 

From the figure, it can be found that the viscosity ratio of nanofluid to water increases 6 

with the increase of volume concentration and is higher than that obtained by Batchelor 7 

correlation [22].  8 
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 9 

Fig. 4 Effective viscosity of the nanofluid at various volume concentrations (error bar ± 5%) 10 

3.  Experimental apparatus 11 

Fig. 5 shows the schematic of test section. As well known, a manifold which induce 12 

a uniform flow distribution in each channel and keep the fluid at a stable state is of 13 

crucial importance in the experimental test of parallel flow multilayer channels. In this 14 

study, the inlet and outlet of MMFT are connected with a manifold respectively by braze 15 

welding. Moreover, thermal resistors and pressure transducer are installed in the 16 
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manifolds to measure temperature and pressure difference of the test section inlet and 1 

outlet. Two heating plates are covered the upper and lower wall surfaces of MMFT to 2 

provide constant heat flux. Meanwhile, between the MMFT and heating plate, five flat 3 

thermal resistances are fixed with equidistance on the upper and lower surface of 4 

MMFT respectively to measure the axial wall surface temperature distribution. Finally, 5 

test section is tightly wrapped by 50 mm-thick thermal insulation material to achieve 6 

thermal insulation. 7 

Liquid

Manifold

Thermal 

resisitor

Thermal 

resisitor

MMFT

Pressure 

transducer

Liquid

 8 

Fig. 5 Schematic of test section 9 

The schematic of test system is presented in Fig. 6. The working fluid is driven from 10 

liquid storage tank by pump and then flow through filter, Coriolis mass flow meter and 11 

test section. In order to recover initial temperature, the working fluid heat in the test 12 

section enters into the double-pipe heat exchanger and cooled with water coolant 13 

provided by water chilling unit. Finally, working fluid flow back to liquid storage tank, 14 
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finishing the main loop. 1 
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2 

Fig. 6 Schematic of test system 3 

 4 

4.  Data analysis 5 

4.1 Data reduction 6 

The hydraulic diameter and aspect ratio of the rectangular minichannels are 7 

respectively defined as  8 

𝐷ℎ =
4𝐴

𝑐
=

4(𝐻𝑐𝑊𝑐−𝐴𝑓𝑖𝑛)

2𝐻𝑐+2𝑊𝑐+𝑁(𝐿𝑓𝑖𝑛−𝑊𝑓𝑖𝑛)
  and 

c

c

W

H
             (4) 9 

The total pressure differential in the test section is expressed as 10 

fri mp p p   
       (5) 11 

Frictional pressure loss is calculated using Eq. (7), and singular pressure loss (ΔPm) is 12 
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calculated using the method mentioned in the Ref. [23]. 1 

2

c c fin

2

(H W A )fh
fri

D
f p

L m

  
        (6) 2 

The heat gained by the fluid that is heated throughout the test section is expressed as 3 

 , ,p f out f inQ m c T T   
      (7) 4 

The heat flux can be calculated from the heat gain by the fluid as 5 

c

Q
q

L Pe



            (8) 6 

According to the energy balance, the fluid temperature at longitudinal x position is 7 

calculated as 8 

,

,

T ( ) T
( )

f f in

p f

Q
x x

m c x L
  

 
          (9) 9 

The local heat transfer coefficient is given by 10 

( )
T ( ) T ( )w f

q
h x

x x



        (10) 11 

Based on the energy balance, heat loss rate is defined as 12 

 , ,p f out f inVI m c T T

VI


   
                   (11) 13 

The local Nusselt number is defined as 14 

( )
( )

( )

h

f

h x D
Nu x

k x


         (12) 15 

The local Reynolds number is defined as 16 
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Re( )
( )

h

f

m D
x

A x





        (13) 1 

Accordingly, the averaged Nusselt number and Reynolds number are given by 2 

10

1

n

n

Nu Nu


  and 

10

1

Re Ren

n

           (14) 3 

4.2 Uncertainties analysis 4 

In this study, the uncertainties in temperature and mass flow rate measurements are 5 

± 0.1°C and ± 0.2%, respectively. The error associated with the pressure difference 6 

transducer is ± 0.25%. The uncertainties of the parameters calculated by using 7 

directly measured values, such as f, Nu, and Re, are generally denoted as δz and 8 

calculated as 9 

 1 2z=f , ny y y
 10 

1
22 2 2

1 2

1 2

n

n

z z z
z y y y

y y y
   

       
         
         

    (15) 11 

where δy1, δy2, ……δyn are the uncertainties of directly measured values.  12 

The test ranges and uncertainties of some relevant parameters are summarized in 13 

Table 1. 14 

Table 1 Operating conditions 15 

 value uncertainty  value uncertainty 

G (Kg/h) 10-405 0.2% Dh (mm) 2.02-2.05 2.0-2.5% 

Afin (mm2) 0.08-0.31 3.5-7% Re 129-5650 2.2-11.2% 
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Tw (K) 294-315 0.1K f 0.025-0.6 3.2-15.2% 

Tf (K) 292-302 0.1K Nu 4.57-52 3.6-15.9% 

Q (W) 185-208 3.1-8.0% PEC 0.93-2 4.6-17.2% 

 1 

5.  Results and discussion 2 

For the experimental investigations, the pressure drop and heat transfer 3 

characteristics of Sample 1 were firstly studied, which aims to verify the integrity of 4 

the experimental facility and provide baseline information to compare the experimental 5 

results using different enhancement techniques. Next, research just using one 6 

enhancement technique were performed. Specifically, the pressure drop and heat 7 

transfer characteristics of water in sample 2-5 and nanofluids in sample 1 were studied. 8 

Finally, the experimental results using two combined enhancement techniques were 9 

obtained and then compared with those of previous experiments. 10 

5.1 Experiments with sample 1 11 

The friction factor is plotted as functions of Reynolds number in Fig. 5, together with 12 

the Shah and London [24] correlation for a fully developed laminar flow in rectangular 13 

channels, 14 

2 3 4 5.Re 96(1 1.3553 1.9467 1.7012 0.9564 0.2537 )f                  (16) 15 

The well-known Blasius [25] correlation for fully developed turbulent flows, 16 
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0.250.316 Ref                          (17) 1 
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Fig. 7(a) Friction factor and (b) Nusselt number versus Reynolds number for sample 1 3 

From Fig. 7(a), it can be found that the test data of sample 1 agrees excellently with 4 

the theoretical value obtained by Shah and London correlation in the laminar and is 5 

smaller compared with Blasius correlation in the turbulent region. The laminar-6 

turbulent transition is clear visible for about Recr = 2000, which is an accepted value 7 

for macrotube. 8 

In Fig. 7(b), the Nusselt numbers are plotted against the Reynolds number for sample 9 

1. The Nusselt numbers increase with the increase of the Reynolds number. As Re 10 

increases, the locations where the slope of the test data changes occurs at about Re = 11 

2000, which corresponds to the onset of transition to turbulent. This result is consistent 12 

with above conclusion obtained from the friction factor.  13 

5.2 Experiments with one enhancement technique 14 

In this section, flow and heat transfer characteristics of sample 2-5 using water as 15 

working fluid were investigated. Fig. 8(a) shows friction factors of sample 1-5. It is 16 
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observed that friction factor of all samples with the fin structure is higher than that of 1 

smooth tube, sample 1 and the friction factor increases with the increase of fin number. 2 

From Fig. 8(a), it is further observed that for sample 2-5 with the fin structure, an earlier 3 

laminar-turbulent transition occurs at Re = 1500-1900 compared with the result of 4 

sample 1. This behavior could be attributed to the more significant disturbance in the 5 

flow caused by fin structure. The earliest laminar-turbulent transition occurs about at 6 

Re = 1500 for sample 5. Fig. 8(b) shows averaged Nusselt numbers of sample 1-5. 7 

Nusselt number of the samples with the fin structure is higher than that of sample 1. 8 

The Nusselt number also increases with the increase of fin number and Nusselt number 9 

can increase by up to 135% for sample 5. 10 
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Fig. 8(a) Friction factor and (b) Nusselt number versus Reynolds number for sample 1-5 12 

Flow and heat transfer characteristics of sample 1 using TiO2-water nanofluids as 13 

working fluid were also investigated next. In Fig. 9(a), friction factors of nanofluids at 14 

various volume concentrations are plotted against the Reynolds number. The friction 15 

factors of nanofluids are all higher than those of water and increase with the increase 16 

of volume concentrations. The average Nusselt numbers of nanofluids are plotted 17 
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against the Reynolds number at various volume concentrations in Fig. 9(b). As shown 1 

in the figure, Nusselt numbers of nanofluids also are all higher than those of water, 2 

especially in the turbulent region. Furthermore, at φ ≤  0.01%, Nusselt numbers 3 

increase with the increase in volume concentration; at φ ≥ 0.01%, Nusselt numbers 4 

decrease with the increase in volume concentration, which indicates an optimal volume 5 

concentration of 0.01% for heat transfer performance. This phenomenon is consistent 6 

with the experimental results in Ref. [26-27]. As explained in Ref. [27], this 7 

phenomenon is attributed to the combined effect of the increases in thermal 8 

conductivity and viscosity. With the increase in volume concentration, thermal 9 

conductivity and viscosity both increase. The former can strengthen heat transfer, 10 

whereas the latter can weaken heat transfer due to the increase in the thickness of the 11 

thermal boundary layer. At φ ≤  0.01%, the positive effects of the thermal 12 

conductivity enhancement in the present work overcome the negative effect of viscosity. 13 

The opposite cases are true at φ ≥ 0.01%. On the other hand, the energy exchanges 14 

between particles and particles, particles and water, and particles and wall resulting 15 

from the chaotic movement of nanoparticles enhance heat transfer. With the increase in 16 

volume concentration, more particles exist per unit volume. In the experiments 17 

conducted in this work, such kind of energy exchanges seem to weaken as the particle 18 

number increases to a certain value because large particle numbers may restrict the 19 

chaotic movement of nanoparticles. Nevertheless, the mechanism of the microscopical 20 

movement of nanoparticles for enhancing heat transfer need be studied further. 21 
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Fig. 9(a) Friction factor and (b) Nusselt number versus Reynolds number of nanofluids in sample 1 2 

From above experimental results, it can be found that regardless of which 3 

enhancement technique used, heat transfer can be enhanced but tend to increased 4 

pressure drop. Thus, as a comprehensive assessment of nanofluid performance in terms 5 

of heat transfer enhancement, a performance evaluation criterion (PEC) based on the 6 

same pumping power consumption is defined as [28] 7 
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Fig. 10 presents the PEC values of samples 2-5 and nanofluids with different volume 9 

concentration. As shown in the figure, PEC values of sample 2-5 are all higher than 1, 10 

which demonstrates that using micro fin does enhance heat transfer performance. 11 

Among sample 2-5, sample 5 has the highest PEC values and maximum value of PEC 12 

is 1.83 for sample 5 at about Re = 2300. Moreover, for using nanofluids as working 13 

fluids, except for 0.1% nanofluids and Re < 2000, the nanofluids could enhance heat 14 

transfer performance without huge penalty of increased pumping power under other 15 

conditions. 0.01% nanofluid has the best PEC in all nanofluids and the maximum value 16 
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is 1.43 occurring at Re = 5100.  1 
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Fig. 10 PEC values versus Reynolds number for samples 2-5 and nanofluids with different φ 3 

5.3 Experiments with two combined enhancement techniques 4 

In this section, the enhanced heat transfer performance were studied by using 5 

nanofluids in MMFTs with fin structures and comparing with the initial results of water 6 

in sample 1. The friction factors of nanofluids in sample 2-5 are plotted as functions of 7 

Reynolds number in Fig. 11 respectively. Compared with water in sample 1, nanofluids 8 

in samples with fin structures have the higher friction factors and show the earlier 9 

laminar-turbulent transition which is attributed to the effects of enhanced disturbance 10 

caused by micro fin structures.   11 
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Fig. 11 Comparison of friction factors between water in sample 1 and TiO2-water nanofluids in (a) 5 

samples 2, (b) sample 3, (c) sample 4 and (d) sample 5  6 

 7 

Table 2 Average increase of f using enhancement techniques with respect to the water in sample 1 8 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Water  － 3.5% 21.2% 36.9% 43.9% 

0.005% nanofluid 2.9% 16.4% 31.7% 58.2% 61.9% 

0.01% nanofluid  10.9% 26.1% 41.4% 61.4% 71.9% 

0.1% nanofluid 21.7% 30.0% 47.6% 65.7% 77.5% 
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To illustrate the effect of enhancement techniques on flow characteristic, Table 2 1 

summarizes the increase in the friction factor of nanofluids in sample 2-5 as with 2 

respect to the water in sample 1. From the comparison, it can be found that the friction 3 

factor increases with the increases of the volume concentrations of nanofluids as well 4 

as the fin number. A maximum 77.5% average increase of friction factor occurs for 0.1% 5 

nanofluid in sample 5.  6 
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Fig. 12 Comparison of Nusselt numbers between water in sample 1 and TiO2-water nanofluids in 11 

(a) samples 2, (b) sample 3, (c) sample 4 and (d) sample 5 12 

Fig. 12 shows Nusselt numbers of nanofluids in sample 2-5 compared with those of 13 
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water in sample 1. As shown in the figure, all Nusselt numbers obtained by using two 1 

combined enhancement techniques are much higher than those of water in sample 1, 2 

especially in the turbulent region. Similarly, the increases of Nusselt number in laminar 3 

and turbulent regions for nanofluids in sample 2-5 as with respect to the water in sample 4 

1 are listed in Table 3 respectively. The quantified analysis of heat transfer enhancement 5 

shown in Table 3 indicate that combination of two enhancement techniques could 6 

further increase the Nusselt number compared with just using one enhancement 7 

technique. From Table 3, it can be further found that for each working condition, the 8 

increase of Nu in turbulent region is much higher than that in laminar region. As 9 

concluded in Ref. [29], two main mechanisms caused by micro fin structure can be used 10 

to explain the heat transfer enhancement. Specifically, based on continuous fin structure 11 

along axial direction, the increase in heat transfer area due to exist of micro fin is 12 

dominant in the laminar region, while more disturbances caused by fin structure has 13 

more significant effect on heat transfer enhancement in the turbulent region. In this case, 14 

micro fin structure causes more disturbances in turbulent flow, which contributes to 15 

more intense irregular movement of nanoparticles. Due to the stronger chaotic 16 

movement of nanoparticles, the energy transport among the wall, fluid, and particles 17 

become stronger and thereby improve heat transfer performance. Therefore, the heat 18 

transfer enhancement in turbulent region is more remarkable. 19 

Based on the consideration about heat transfer of nanofluids, from Table 3, it also 20 

can be found that heat transfer performances of nanofluids mainly depend on two 21 

factors, nanofluid concentration and fin structure (fin number), which indicates that 22 
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these two factors both have significant effects on energy transport of nanofluids. From 1 

the further comparison in Table 3, it can be found that the average increase of Nusselt 2 

number increases up to 21% for just changing the concentrations, while the average 3 

increase of Nusselt number increases up to 91% for just changing the fin numbers. 4 

Therefore, it seems that fin structure has more significant effects on heat transfer 5 

performance of nanofluids than nanofluids concentration in this study.   6 

Table 3 Average increase of Nusselt numbers using enhancement techniques with respect to the 7 

water in sample 1 8 

 water 0.005% nanofluid 0.01% nanofluid 0.1% nanofluid 

 Lam. Tur. Lam. Tur. Lam. Tur. Lam. Tur. 

Sample 1 － － 3.4% 15.7% 8.3% 33.5% 4.0% 21.2% 

Sample 2 12.4% 22.2% 13.8% 31.6% 22.7% 55.1% 19.3% 39.2% 

Sample 3 18.8% 32.7% 18.9% 34.6% 23.2% 59.4% 19.8% 42.1% 

Sample 4 24.8% 77.3% 32.0% 107.2% 38.9% 123.7% 34.7% 112.0% 

Sample 5 30.9% 112.7% 40.6% 125.0% 53.6%% 146.1% 44.4% 128.1% 

The optimal volume concentration is also 0.01% for nanofluids in each sample, 9 

which is consistent with the conclusion obtained in the smooth tube-sample 1 and 10 

Nusselt number increases with increase of fin number. The Nusselt number of 0.01% 11 

nanofluid in sample 5 are highest while Nusselt number in laminar and turbulent region 12 

can averagely increase by 53.6% and 146.1% respectively. Nusselt number increases 13 

by up to 158% at about Re = 3600. 14 
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From above experimental results, it can be concluded that although using nanofluids 1 

as work fluid in the MMFT with fin structures could increase Nusselt number, it also 2 

accompany with the higher pressure drop. Therefore, in order to discuss whether using 3 

nanofluids in MMFT with fin structure (sample 2-5) can further improve heat transfer 4 

performance compared with using water in sample 2-5, a new parameter PECnf is 5 

introduced and defined as 6 
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From the Eq. (20), it could be found that the baseline data is the test results of nanofluids 8 

in sample 1 when the PECnf is calculated. Fig. 13 shows the PECnf values of sample 2-9 

5. As shown in the figure, PECnf is irregular with the varying of Reynolds number in 10 

term of each working condition. Moreover, not all the PECnf values are higher than 1, 11 

which illustrates that adding nanofluids into MMFT with fin structure to further 12 

improve heat transfer performance is not universally applicable. Specifically, a better 13 

heat transfer performance can be obtained by using 0.01% nanofluids in sample 3-5.     14 
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Fig. 13 PECnf values versus Reynolds number in (a) sample 2, (b) sample 3, (c) sample 4 and (d) 3 

sample 5 4 

Based on above conclusion, PEC values under several potential optimal working 5 

condition in this study are presented in Fig. 14, including PECs of 0.01% nanofluid in 6 

sample 1 and sample 3-5 and water in sample 5. Generally, 0.01% nanofluid in sample 7 

5 has the highest PEC values. The maximum PEC values of 0.01% nanofluid in sample 8 

5 are 2.0 as Re = 5150. Moreover, using water in sample 5 also can achieve the good 9 

performance, which is attributed that PECs of water in sample 5 are higher than those 10 

of other working conditions except for 0.01% nanofluid in sample 5 and are even higher 11 

than those of 0.01% nanofluid in sample 5 as Reynolds number ranges about from 1700 12 

to 2500. From the Fig. 14, it can be further found that micro fin structure has the better 13 

heat transfer performance than nanofluids in term of just using one enhancement 14 

technique. 15 
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Fig. 14 Comparison of PEC under several conditions 2 

Finally, the PECs obtained under two optimal working conditions (0.01% nanofluid 3 

and water in sample 5 respectively) in this study are compared with those of other 4 

research, which are shown in Fig. 15. From the comparison, it can be found that two 5 

sets of PEC values in this study increase with the increase of Reynolds number in the 6 

turbulent region, which is attributed that improvement of heat transfer is higher than 7 

the increase of pressure drop. This behavior is much different with the results of other 8 

research shown in Fig .15, which presents the decrease of PEC with the increase of 9 

Reynolds number in the larger Reynolds numbers (turbulent region). In Ref. [30-34], 10 

different kinds of inserts including twist, porous medium, coiled wire and twisted-ring 11 

used as turbulators were installed in the tube to enhance heat transfer performance. As 12 

well-known, the heat transfer enhancement caused by turbulator is more significant in 13 

laminar region. However, as mentioned above, heat transfer enhancements in this study 14 

that come from either energy transfer between nanoparticles and fluids or disturbances 15 

caused by fin structure both are stronger in the turbulent region. Therefore, different 16 
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enhancement mechanisms cause different growth characteristics of heat transfer 1 

performance, and thereby the trend of PEC in present study is quite different from those 2 

in the research using inserts as turbulator [30-34]. Comparing with the results in Ref. 3 

[35-36] where only using nanofluid technique was used, it can be found that 4 

combination of two enhancement techniques could obtain better heat transfer 5 

performance. Unfortunately, due to the restriction of pressure drop, the test data in 6 

larger Reynolds numbers could not be measured in this study. The corresponding 7 

research need to be further studied and then compared with the results in similar 8 

research. Generally, using enhancement technique in this study shows a good PEC 9 

value and applicability to improve the heat transfer performance. 10 
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Fig. 15 Comparison of PEC values in this study with those of other research 12 

 13 

6.  Conclusion 14 

The enhanced heat transfer performances by using two enhancement techniques 15 

(micro fin structure and nanofluid) both respectively and conjunctively were studied. 16 

Through testing the friction factor, Nusselt number as well as PEC, the key findings can 17 
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be concluded as follows. 1 

(1) The Nusselt number and friction factor in samples with micro fin strictures 2 

increase with the increase of fin numbers and also are both higher than those in smooth 3 

sample. Moreover, using TiO2-water nanofluids as working fluids also can improve the 4 

heat transfer but tend to increase pressure drop. 5 

(2) Either micro fin structure or nanofluid is a suitable enhancement technique to 6 

improve the heat transfer performance in MMFT. Furthermore, from the comparison of 7 

these two enhancement techniques, using samples with micro fin structure has the 8 

higher PEC values than using nanofluid as working fluid in smooth sample.  9 

(3) Compared with water in the sample with fin structure, only using nanofluid with 10 

volume concentration of 0.01% instead of water can further enhance the heat transfer 11 

generally. The optimal working condition is running 0.01% nanofluid in sample 5. 12 

Under this working condition, Nusselt number increases by up to 158% at about Re = 13 

3600 and the maximum PEC value is 2.0 as Re = 5150. 14 

(4) An optimal heat transfer scheme was proposed based on experimental results in 15 

this study. Generally, alone employ of micro fin technique is recommended due to its 16 

excellent heat transfer performance as well as the economic consideration. The 17 

combination of two enhancement techniques suggests to be employed in the turbulent 18 

region to face the demand of higher heat flux removal rate.  19 

 20 

 21 
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