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Abstract

We derive, in the electrostatic limit, the dispersion relation for graphene plasmons
(GPs) supported by a triangular-like interface between two dielectric media. These
graphene channel plasmons possess as main characteristics the ability to con ne the
electric eld also in the lateral direction and act as subwavelength one-dimensional (1D)
waveguides. In this supporting information we describe the derivation of the equations
given in the main article with utmost detail, while also outlining the calculation of the
Green’s function akin to a V-shaped interface between two insulators. Propagation

losses are also discussed, and compared against the losses of at-GPs. Finally, we


padgo@fotonik.dtu.dk
peres@fisica.uminho.pt

critically analyze the dependence of the concurrently conducted nite element method
(FEM) simulations on the radius of the curvature at the triangular apex, since the
numerical simulations contrarily to the analytics cannot rigorously cope with the

in nitely sharp edge of the V-structure.

Statement of the problem

For the sake of clarity we consider only wedge graphene plasmon (WGP) modes. The deriva-
tion for the groove follows by exploiting the symmetries with respect to the interchange of
dielectric constants or the replacement > ¥ 7

In order to derive the plasmon modes supported by a dielectric wedge covered with

graphene in the electrostatic limit, we need to solve Poisson’s equation,

r
r2 (r)= 0 ; (S1)

0
The one-dimensional (1D) wedge possesses translational symmetry along the z-direction;
therefore, we decompose both the electrostatic potential and the charge-density as (in cylin-

drical coordinates)

(= (r; )e; (S2)

(= (r; )e'*; (S3)

where we have omitted the usual time-dependence of the form e 't for the sake of clarity.
The above procedure e ectively transforms a three-dimensional (3D) problem into a two-

dimensional (2D) one:
o () @ ()= O (s4)

where r3; = 02 +r '@ +r 2@2 is the transverse part of the Laplacian in cylindrical

coordinates.



The solution of Eq. yields the wedge graphene plasmons (WGPs) that propagate
along the longitudinal direction. To nd such modes, rst we need to compute the Green’s
function for a wedge-like interface between two dielectric media.*** That exercise is the

subject of the next section.

Green’s function of a wedge-like interface

The Green’s functions of a wedge-like interface between two materials with relative permit-

tivities ; and ,, as shown in Fig. [SI] are de ned through the expressions,
YA

(r',0")
.

€1

Z

Figure S1: Wedge interface with an opening angle of 2>  between two dielectric media character-

ized by relative permittivities , (for ~ ”)and 1 (for ” 2 7).
> 10 1 @2 2 0. 0 (r r( ")
= 4= 4= e 0 — .
o Tror Targe ¢ 0T bor
for for ~ 2 ”, and
> 10 1@ ., 0. 0
@rg r@r @rz@ 2 q GZ(r’ B ) ) ( )
for ~ ”. The boundary conditions connect the Green’s function in both regions of

the structure (these will be introduced explicitly shortly). We will determine the solution of



Egs. and by using the solutions of the corresponding homogeneous problem (which
is a particular solution of the inhomogeneous problem) as a basis to construct the (general)
solution of the above equations (subjected to the proper boundary conditions).%4

To make the problem more amenable to handle we shall treat the cases of even and
odd symmetries separately. Therefore, we will only need to solve the problem in, say, the

upper-half space (i.e.,y 0or0 ).

Even symmetry case

The solution of the homogeneous equation corresponding to Egs. and is separable in
a radial part, whose eigenfunctions are modi ed Bessel functions of imaginary order K; (x),
and an angular part, whose eigenfunctions are hyperbolic trigonometric functions. The
variable must satisfy <ef g 0 since we are looking for plasmonic modes. Thus, for the
even case, the Green’s function characterizing the potential felt at (r; ), in the absence of

graphene, due to an elementary charge placed at (r’; ') then reads

Z 1

5(r; ;1 )= d Ki@)A°cosh( ) ; 0 7 (S7)
ZO

Ge(r; ;r% )= 1d K; (qgr) B®cosh( )+ C®sinh( ) ; ~ ", (S8)
ZO

Go(r; ;% )= i Ki (@r)D°cosh[ ()] ; : (S9)

0

where the coe cients A® to D€ are determined by imposing the boundary conditions holding

for this system, namely

Gi(r; ;1 Ni = =G%(r; ;15 D= (S10)
z@@GE(r: s Dj == 1@@Gi(r; % D= (S11)
GL(r 5 Di=o=G(r; ;1 Di=o; (S12)
@QGe (rn D= @@Gi(r; s Di=e= i (r r): (S13)



Equations (S10)-(S13) form a linear system for the coe cients A® to D®. After some algebra,

one nds that

ae = 2T K: (ar) sinh( )cosh[ (2 9]

250 sinh( ) Rsinh[ ( 27)] i (S14)

R
b XK (K (%) = 5sbm (for 5 ¢>0) has been used3] with

[where the result = %

R=2 1. S15
2+ (515)
2 5

T = ; S16
. (S16)

along with similar expressions for the remaining coe cients (not shown for brevity). How-
ever, we will only need the A in what follows, since we will be evaluating it at the interface

(where the charges are, that is, within the graphene monolayer).

Odd symmetry case

Following the same guidelines that lead to Eq. (S14), with the appropriate adaptations, one

obtains
2T sinh( )sinh[ (2 )]
0 — . 0 .
A= o KOG Y+ Rsin[ (27 (S17)
corresponding to the odd-symmetry Green’s function in medium 2, that is,
YA a1
o5(r; ;v = d K @)A°sinh( ) ; O . (S18)
0
Summary: Green’s functions (even and odd)
In possession of Eqs. (S7), (S14) and (S17)-(S18), we may write
ot 41
2 )= 5 4 K@K @’ °(;%; (S19)



where we have introduced the function,

__sinh( )cosh( )cosh[ (  20]

GO="Gme ) Renh[ (27 (520)
and,
2T Za
S(r; ir' = — o o d Ki @)K; @r’) °C; % ; (S21)
with
o( )= sinh( )sinh( )sinh[ ( 2 0] : (S22)

sinh( )+ Rsinh[ ( 27)]
Note that, naturally, the only di erence between the even and odd symmetry Green’s func-
tions is encapsulated in the functions ®°( ; % which contain all the angular dependence.
The Green’s functions in medium 1 may be derived following similar steps.
Remark: for the particular case where = = =2, the above Green’s functions are not a
suitable representations for those of a planar interface. This is because the homogeneous
solutions of the corresponding Laplace equation are no longer the same as in the cylindrical
symmetry case, and therefore our procedure above would need to be adapted accordingly

for that speci c case see, for instance, Ref. 4| for further details.

Graphene Plasmons in the Wedge Geometry

Having derived the Green’s functions of a wedge-like interface, we can now proceed towards
the solution of Poisson’s equation [cf. Eq. (S4)],
2
0>, 18

1 2
i tons, ¢ ()= ; (523)




whose solution may, in general, be written as
Z a1 Z 2

()= drr’  d'Gy(r ;r ) () (S24)
0 0

Here, the density of charge carriers may be expressed in the form

)= enmn; (525)

where n(r) accounts for the 2D particle-density along the radial coordinate. On the other

hand, the 2D continuity equation dictates (in frequency domain)

i
n(r) = l_erZD Jop

M e

ite @rz

r;?); (S26)

where, in the last equality, we have employed Ohm’s law, and where (1) denotes the

dynamical conductivity of graphene. Having an explicit expression for n(r), one may now

use Egs. (S25) and (S26) to simplify Eq. (S24) substantially, in particular

. Z
r)=" 5!) e o

are

a1
dr'G,(r; ;r'
0

(R F (S27)

Notice that the potential in the whole space can only be derived once the potential at the

graphene sheet is determined. The determination of (r'; *) is outlined below.

Solution of (r%; ) via orthogonal polynomials expansion

Equation (S27), at = ~”, reduces to

e*

ar? > (" (S28)

. Z
=" E!) OldrOGz(r; 7t



Here, we have de ned (r) (r%; 7). The previous equation stands as an integro-di erential
equation for the scalar potential (r), and we are not aware of an analytical solution. In what
follows, we will solve Eq. (S28) using the orthogonal polynomials expansion technique;"

within this approach, it is possible to convert the above integro-di erential equation into a

standard linear algebra eigenproblem. To that end, we expand the electric potential at 7

using Laguerre polynomials, L,(x) as a complete set of basis functions, namely

X
(N = caln(ar)e 2 (S29)
n=0

In order to arrive at an eigenvalue problem, all we need to do is to substitute this expansion

into both sides of Eq. (S28), followed by the exploitation of the orthogonality of Laguerre

Ra

polynomials explicitly,

dx e *La(X)Lm(X) = nm -& Such procedure leads to the follow-
ing matrix equation

il X _
ROk _ UmnCn ; (S30)

n
where we have truncated the expansion in Eq. (S29) at N, and the elements of the matrix
U [of size (N +1) (N +1)] read
Z B z i

X+ 3
Um = dy G067y e Flm(0 L)+ LP) GLla®) 5 (83D

where the dimensionless variables x = qr and y = qr’ have been introduced, and Lﬁk)(x) refer
to the generalized Laguerre polynomials.® We note that both the integration over x and y
can be performed analytically; then, only the integration over [which enters via the Green’s
function cf. Eqgs. and (S21)] needs to be carried out numerically. This makes the
computation of the matrix elements extremely fast. The eigenvalue equation (S30) can be
solved numerically using standard linear algebra routines. Once we nd the corresponding

eigenvalues (whose number matches the size of the vector €, that is, N + 1), the spectrum



of graphene plasmons traveling along the triangular wedge follows from

="n; (S32)

where, for a given frequency, Eq. (S32) returns the discrete wedge GPs modes. In particular,
using graphene’s Drude-like conductivity with negligible damping,” one obtains the following
relation for the dispersion relation of wedge graphene plasmons (WGPs) [and for grooves

alike],
pP_
(@) = at(q)E N (S33)

where the (re)de ned eigenvalues , stem from ~, = -2— , = 3= that is, we have

20 2 o( 1+ 2)?

explicitly factorized the proportionality factor 27— appearing in the Green’s function (S21).

20

The above equation gives the WGP’s energy, (q), parameterized by the propagation con-
(@]

stant along the apex of the wedge. Here, 4(q) = 4_Er~cq stands for the dispersion

1+ 2

relation for plasmons in at graphene (sandwiched between two dielectrics with ; and »;
denotes the ne-structure constant). Note that the spectrum of WGPs contains a discrete

set of even and odd modes [depending of whether we use G5(x; ”;y; 7) or G3(x; 7;y; 7) in

Eq. (S31)].

The dispersion relation akin to the rst three waveguide-like wedge graphene plasmons is
shown in Fig. obtained by virtue of Eq. (S33). It is interesting to note that, within our
theory, the spectrum of each WGPs mode is simply the spectrum of a at GPs multiplied by
a proportionality constant related to the corresponding eigenvalue, as Eq. and Fig.
plainly show. This proportionality constant, as highlighted in the main manuscript, depends
uniquely in the opening angles, 27, and material parameters, and therefore carries a purely

geometric meaning.

By solving the linear algebra problem posed by Eqg. (S30) we can now reconstruct any



Even WGP modes Odd WGP modes
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Figure S2: Dispersion relation of graphene plasmons with even and odd symmetry guided along
a graphene-covered dielectric wedge ( rst three modes), obtained using Eq. (S33). The solid black
line depicts the spectrum of plasmons in a at graphene. Parameters: EF = 0:4¢eV, 1 =1, » =4,
and 2”7 =25 . We have used N = 12 for the truncation of the sum/matrix.

physical quantity we want from the corresponding calculated eigenvalues and eigenvectors.
Recall that the (radial) electrostatic potential evaluated at = ~” (the graphene sheet),

according to Eq. (S29), has the form
(n7)= (N= caLa(ar)e *: (S34)
The transverse part of the electric eld then follows from
E(r; )= rao (1 ); (S35)

Alternatively, in cartesian coordinates, the components of the electric eld in the xy-plane

read O 1 O 10 1

BEXR _ BCOS z sin ,R BErg : (536)
Ey sin ” 7 E

COoS

We further note that for small opening angles the -component of the electric eld is

approximately equal to the component of the electric eld projected along the y-axis, that

10



is, E (x;y) 7 Ey(XY).

Propagation losses

Loss is a well-known issue in plasmonics. Here, we shall brie y comment and compare the

propagation losses of the WGP/GPP modes against their at-GP counterpart. To that end,

we cast Eq. (S32) as

a=fL > qs/1/1; (s37)

n n n
where the proportionality factor is £ = i1= (1). Losses can be quanti ed by introducing
the propagation length, Ly, which is de ned as L, = (2=m q) ; and essentially corresponds
to the distance the plasmon propagates until its intensity falls o by 1=e. Hence, its value

decreases with increasing loss. Therefore, in the light of Eq. (S37) one can write

L=/ . (S38)

Since |, increases with the mode order (up to 2=4, corresponding to at graphene), then the
propagation length is diminishes from the higher-order modes to the fundamental one. This
is shown in gure’s |S3 a) panel. Note, however, that the corresponding eld con nement
is largest for the fundamental mode. This trade-o between eld con nement and loss is
characteristic of plasmonics. Still, multi-micrometer propagation can be easily obtained at
THz frequencies.

A perhaps more interesting result emerges when we compare the propagation length with
the corresponding plasmon wavelength. Such procedure indicates the number of plasmon
oscillations that occur within the propagation length. This is a much more fair comparison
because it measures the ratio between eld localization and losses. The outcome is presented
in gure’s S3| b) panel. There are two major features: rst there is a maximum value for

L,= wep (do not confuse it with the eigenvalue ,); second, and more importantly, one can

11



14 a) 35° b)
12 30
_ 10 = 25
= O]
S o8 = 20-
—'Q_ 0.6 _ICL 15-
04 10-
0.2
0.0 O
0 20 40 60 80 0 20 40 60 80 100 120 140
f(THz) f(THz)

Figure S3: Propagation loss. Left: propagation length in absolute units for the at-GP (black line)
and the two lowest-energy WGP modes for a graphene-covered wedge with an opening angle of
2> =25, Ef =04¢eV,~ =37mev?, { =1and , =4 (similar results can be obtained for
grooves). Rigth: propagation length in units of the graphene plasmon wavelength corresponding
to each mode. Graphene conductivity was modeled according to Kubo’s formula (both intra- and
inter-band contributions) at zero temperature.'’

observe that the ratio L,= wgp, at any frequency, remains the same despite the mode order,
and it is fact the same as for the at-GP. Such behavior can be understood by noting that
both the real and imaginary parts of q possess the same functional dependence on ,, (or
~n), and thus

<e q

wep =M(

) independent of |, ; (S39)

that is, Ly= wep is independent of , (Tn), and therefore this quantity is universal for
both WGP, GGP, and at-GPs, as the gure demonstrates. This characteristic is direct

consequence of the universal scaling law stated by Eq. (S32).

12



Convergence of the solution via orthogonal polynomials
expansion

Figure [S4|clearly shows that the solution (for the rst three modes) via orthogonal polynomi-
als expansion technique converges fast with the number of polynomials used in the expansion

for the electrostatic potential.

Odd WGP modes

40
o
35 PRt
-
30 -
L - |
a"\—\ Iight-uga—n'
PR e !
’,:“ 25 e \_“’—'ﬂalGPs B
T i ___m" = 1stN=6
— 20F ’," - = 2ndN=6 -
o\
~ o - = 3rdN=6
w— 15[ o o lstN=s o
/,\,\’ v 2nd N=8
0} M G 3rdN=8
4 = 1stN=12
74 . 2ndN=12 A
¢+ 3rdN=12
0 L L L L L .
0 10 20 30 40 50 60
q(mi )

Figure S4: Same as Fig. but using di erent values for the expansion truncation, N, to check
the method’s convergence.

2D Electric eld distributions of WGP odd modes: further
details

Further details on the 2D spatial distributions of the electric eld akin to WGP odd modes.

Ey(z,y) 1st WGP E(2,y)
I 8040409 " w9 -

Y Gres

T Qres T (res

Figure S5: Both angular and radial components of the electric eld (a.u.) akin to the rst WGP
odd mode. The parameters are the same as in Fig. @ Only the region ~ < < ” is shown.
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Ey(z,y) 1st WGP Ey(z,y)
R I

Y Qres

T Qres T (res

Figure S6: Comparison between the components of the electric eld (a.u.) projected along " (right
panel) and ¥ (right panel). The parameters are the same as in Figs. and Note that
E (X;y) 7 Ey(X;y). Only the region ~ < < 7 is shown.

Dependence of FEM simulations on the rounding of the
edge

Fully numerical simulations (with a local-response dielectric function) cannot handle in-

nitely sharp boundaries. For this reason, it was necessary to round (smooth) the otherwise
sharp apex of the triangular wedge in our full-wave electrodynamic FEM simulations im-
plemented in COMSOL Multiphysics commercial software. The in uence of the radius of
curvature (rounding) on the WGPs’ wavevector is shown in Fig. [S7] It can be observed
from the gure that, as the radius of curvature (R.) of the edge decreases, the value for the
WGP propagation constant predicted by the simulations (dots) successively approaches the
propagation constant given by our quasi-analytic model (dashed horizontal lines). However,
if one takes the limit when R, ¥ 0 the WGP wavevector eventually diverges to in nity. The
e ect is more dramatic for the fundamental mode than for the second order mode because
the former possesses a smaller wavelength and therefore probes more deeply within the V-
shape. In order to cope with this unavoidable nuisance we have chosen a very small radius
of curvature, to mimic the (idealized) in nitely sharp interface considered here, but in such a
way that it is not too small to produce divergences. Therefore, we have taken R, = 0:25 nm

in our FEM numerical simulations (corresponding to the third data point counting from the

14



left), a number within the ballpark of the 0:34 nm thickness of a monolayer of sp?-hybridized

carbon. Notice that values in the neighborhood of this value give similar results.

35
<) RELLEE R L e L R R
—
—
£ 25
- 1st WGP (COMSOL)
~ 2nd WGP (COMSOL)
£ 20| ==+ 1st WGP (Theory)
==+ 2nd WGP (Theory)
15t
0.0 05 1.0 15 2.0

Rounding (radius of curvature in nm)

Figure S7: Guided graphene plasmon’s wavevector, for f = 20 THz, as a function of the radius of
curvature of the apex of the wedge. Note that the numerical solution as expected is sensitive
to the parameter, since it cannot cope with in nitely sharp edges. The quasi-analytical model
(horizontal dashed-lines), however, automatically handles the singularity at r = 0 by using the
appropriate (analytic) Green’s functions. Remaining parameters: Ef = 0:4 eV, 1 =1, , =4, and
27 =25.

Lastly, we note that in our COMSOL Multiphysics simulations the graphene sheet is
modeled as a layer of (e ective) nite thickness, t. = 1 nm, with dielectric function ¢(!) =

1+ 28 where p(1) is the Drude conductivity of graphene.”
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