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Abstract

The ability to e�ectively guide electromagnetic radiation below the di�raction limit

is of the utmost importance in the prospect of all-optical plasmonic circuitry. Here, we

propose an alternative solution to conventional metal-based plasmonics by exploiting

the deep subwavelength con�nement and tunability of graphene plasmons guided along

the apex of a graphene-covered dielectric wedge or groove. In particular, we present a

quasi-analytic model to describe the plasmonic eigenmodes in such a system, including

the complete determination of their spectrum and corresponding induced potential and

electric �eld distributions. We have found that the dispersion of wedge/groove graphene

plasmons follows the same functional dependence as their �at-graphene plasmons coun-

terparts, but now scaled by a (purely) geometric factor in which all the information
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about the system's geometry is contained. We believe our results pave the way for the

development of novel custom-tailored photonic devices for subwavelength waveguiding

and localization of light based on recently discovered 2D materials.

Keywords

graphene plasmons, plasmonics, nanophotonics, channel plasmons, wedge, groove

Over the last couple of decades we have been witnessing a steady, exponential growth

in the amount of information produced on a daily basis. In today's �information age�, huge

amounts of data must be processed, stored, and delivered around the world. While the

data-processing part is still primarily carried by electronics, the routing of large volumes of

information is handled with photonic technologies since only these can meet the requirements

in terms of high-speed, density and bandwidth. One of the greatest ambitions of modern

nanophotonics1 is to bridge the gap between electronic and photonic components, and ul-

timately to replace electronic circuits and processing units by their photonic-based coun-

terparts. Current scalable photonic-based communications, however, still could not surpass

the threshold towards miniaturization posed by the di�raction limit. In this regard, a great

deal of hope2 has been deposited in the sub-discipline of photonics known as plasmonics,3,4

which exploits the ability of surface plasmon-polaritons (SPPs)�collective oscillations of

the free-electrons at metal/dielectric interfaces�to localize light into subwavelength dimen-

sions.5�8 Although the pursuit of plasmonic devices suitable for mass-production is still going

on, plasmonics has already achieved some milestones, for instance, subwavelength plasmonic

circuitry including waveguides, interferometers and resonators,9�12 nanolasers,13�16 quantum

optics with or mediated by SPPs,17�21 label-free and single molecule biochemical sensing,22�26

high-resolution nanoscopy,27,28 and even cancer theranostics.29�31

A key component in any plasmonic circuit would be an element to transfer and guide

the electromagnetic (EM) �elds from point A to point B. Typical SPP-guiding struc-
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tures32 consist in small metallic stripes on a dielectric substrate,3,32 chains of plasmonic

nanoparticles,33�35 metal/dielectric/metal slabs,32 or V-shaped grooves carved into a metal-

lic substrate,36�38 just to name a few. Among these, the latter are believed to be appealing

candidates for subwavelength waveguiding of light since they support SPP modes coined

as channel plasmon-polaritons (CPPs),3,36 which have been shown to deliver localized EM

�elds with relatively long propagation lengths,12,36,39 ability to work at telecommunication

wavelengths,10,40,41 and feasibility to steer the EM �eld along bends.10,42 The earliest ref-

erence on CPPs can be found in a theoretical investigation carried out by Dobrzynski and

Maradudin, having obtained analytic expressions in the electrostatic limit for an in�nitely

sharp wedge.43 Many subsequent works then followed in similar wedge con�gurations with a

rounded edge.44�47 During the past decade�owing to the rapid progresses in nanofabrication

and computational tools�a renewed interest has emerged on CPPs guided along triangular

grooves sculpted in metal substrates, leading to a plethora of theoretical and experimental

studies.36,38,40,48�51.

In recent years, graphene52,53�an atomically-thin sp2-hybridized carbon allotrope in

which the atoms sit at the vertexes of a honeycomb lattice�has come to the light as a

novel plasmonic material.54�58 Graphene is classi�ed as a two-dimensional (2D) semi-metal

whose charge-carriers exhibit a linear dispersion.52,53 When doped, graphene also sustains

plasmon-polaritons that inherit the extraordinary optoelectronic properties of this material.

In particular, gate-tunable graphene surface plasmons (GSPs) have been shown to deliver

highly con�ned EM �elds into deep subwavelength regions, large �eld-enhancements, strong

light-matter interactions, and carry the prospect of low-loss plasmonics.54�59 In addition, the

ability to easily control the carrier-density in graphene, e.g. by electrostatic gating and/or

chemical means, constitutes a major advantage of GSPs over conventional metal-based plas-

monics. Popular con�gurations to realize GSPs involve the nanostructuring of an otherwise

continuous graphene sheet into graphene ribbons,26,60�63 disks,64�68 rings,64,65 and graphene

anti-dots (either as individual structures or in periodic arrays).67,69,70

3



Here, we propose a di�erent approach to deliver strongly localized GSPs which does

not involve any nanopatterning done on the graphene layer; it simply consists in depositing

graphene onto a V-shaped wedge or groove previously sculpted in the receiving substrate (a

di�erent, but related con�guration was the subject of a previous numerical study71). This can

be done by employing the same techniques used to fabricate metallic grooves,36 followed by

the graphene deposition or even direct-growth on a pre-con�gured copper substrate.72 Other

possibilities include folding a graphene layer or by exploring the formation of wrinkles (either

naturally occuring73�75 or deliberately formed72). In this way, one departures from customary

�at-graphene geometries and e�ectively produces a 1D channel which not only con�nes light

in the vertical direction that bisects the channel, but is also capable of producing lateral

con�nement of EM radiation.

In this work, we present a quasi-analytic method to derive the dispersion relation and

corresponding spatial distributions of the potential and electric �elds akin to GSPs guided

along a V-shaped channel. We shall consider both the wedge and groove geometries�see

Fig. 1. In what follows we work within the electrostatic limit, which turns out to be a

very good approximation for GSPs owing to the large wavevectors carried by plasmons in

graphene (and thus retardation becomes unimportant). Interestingly, we �nd that for a

�xed wedge/groove angle the corresponding wedge/groove graphene plasmon (WGP/GGP)

dispersions follow a universal scaling law that depends purely on the system's geometry.

Thus, by performing the calculations for a given angle, ’, one immediately gains complete

knowledge of the WGPs/GGPs' wavevectors for every frequency�in other words, all the

modes and corresponding dispersion relations are obtained at once. This constitutes an

enormous advantage in terms of computational resources and time when gauged against

full-wave numerical simulations. From a device-engineering perspective this scaling property

should also signi�cantly ease design of waveguides for given applications. Finally, in further

support of the accuracy of our quasi-analytic technique, we have also performed rigorous

electrodynamic simulations with the aid of a commercially available (Comsol MultiPhysics)
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Figure 1: Upper panel: pictorial representation of a guided GSP mode along a dielectric
wedge; we denote the system a wedge (groove) whenever the medium �lling the 2’-open
region possesses a higher (lower) value for the relative permittivity. Lower panel: coordinate
system for a wedge or groove interface�with an opening angle of 2’� between two dielectric
media characterized by relative permittivities �2 (for �’ � � � ’) and �1 (for ’ � � �
2� � ’).

�nite-element method (FEM), to which we have obtained a remarkable agreement.

We demonstrate that by using graphene-covered triangular wedges or grooves one can

harness the unique properties of GSPs to create novel 1D subwavelength plasmonic waveg-

uides that can squeeze light into deep subwavelength regimes. This becomes particularly

relevant at THz and mid-IR frequencies since traditional metal-based plasmonics perform

poorly in this spectral range (resembling freely propagating light).3 Furthermore, we believe

that this work can set the stage for future investigations of graphene plasmons in 1D chan-

nels, with potentially relevant applications ranging from plasmonic circuitry and waveguiding

to biochemical sensing with WGPs/GGPs or their integration with micro�uidics on a chip.
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Results and Discussion

We consider an idealized geometry in which a graphene monolayer is sandwiched between a

triangular dielectric wedge (or groove) with relative permittivity �2 and a capping dielectric

material with relative permittivity �1, as depicted in Fig. 1. As it will become apparent later,

our model is completely general irrespective of the speci�c values for the dielectric constants

of the cladding insulators. However, in order to cope with the standard nomenclature, we

shall refer to a wedge whenever �2 > �1 and vice-versa to denote a groove. In addition, albeit

here we are primarily interested in graphene, the theory outlined below can be applied to

any 2D layer deposited onto the triangular shape, be it a 2D electron gas or a doped 2D

transition metal dichalcogenide (TMDC), etc.

Before proceeding to the description of our quasi-analytic method, we �rst bring to the

reader's attention that one can treat the cases of even and odd symmetry in the potential

(or induced charges) � with respect to the line bisecting the triangular cross-section�

separately, as this makes the problem more amenable to handle. In particular, for the case

of even symmetry (i.e., when the induced charges are symmetric in the graphene half-planes

which constitute the V-shape), we have found that these even-symmetry modes are not highly

con�ned near the apex of the wedge/groove, with their dispersion being virtually the same

as for GSPs in a �at, planar dielectric/graphene/dielectric interface (cf. SI). Conversely, as

it will become clear ahead, the corresponding odd WGPs/GGPs modes exhibit strong �eld

con�nement near the apex of the wedge/groove, and therefore we shall limit our discussion

solely to the odd-symmetry case hereafter. Owing to the high localization of the �eld near the

apex, we note that although we assume (for simplicity) an in�nitely long V-shape, the theory

developed here remains adequate in the description of V-structures of �nite height/depth as

long as their size is larger than the region spanned by the �eld distribution along the axis of

symmetry.

The extremely large wavevectors (when compared with light's free-space wavevector,

k0 = !=c) attained by graphene plasmons allow us to treat plasmonic excitations in graphene
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within the electrostatic limit with high accuracy. In this regime, the induced electric potential

akin to GSPs must satisfy Poisson's equation, which in cylindric coordinates reads

�
@2

@r2
+

1

r

@

@r
+

1

@r2

@2

@�2
� q2

�
�(r; �) = ��(r; �)

�0
; (1)

where we have written the scalar potential as �(r) = �(r; �)eiqz, owing to the system's

translational invariance along the z-axis (an implicit time-dependence of the form e�i!t is

assumed). This e�ectively reduces our initial 3D problem into a 2D one, and will allow

us to parameterize the dispersion relation of the guided GSPs in terms of the propagation

constant q, i.e. ! � !(q). Hence, the solution of Eq. (1) renders the WGPs/GGPs modes

which propagate along the longitudinal direction. Formally, the solution of this equation in

the medium j = 1; 2 can be written as

�(r; �) =
i�(!)

!

Z 1
0

dr0Gj(r; �; r
0; ’)

�
@2

@r02
� q2

�
�(r0; ’) ; (2)

where �(!) is the dynamical conductivity of graphene, and Gj(r; �; r
0; ’) is the Green's

function associated with Eq. (1) in that medium; the latter is de�ned explicitly in the SI.

Moreover, when writing the preceding equation, we have expressed the carrier-density as

�(r; �) = �en(r)�(�� ’)=r, where the 2D particle density, n(r), was written in terms of the

electrostatic potential by combining the continuity equation together with Ohm's law (cf. SI).

We further remark that we only need to solve for the potential in, say, the upper-half space

(0 � � � �), since we are looking for solutions in which the potential is odd with respect to

the symmetry axis. It is clear from Eq. (2) that the potential in the whole space can only be

derived once the potential at the graphene sheet (i.e., � = ’) is determined. To that end, we

set � = ’ and then employ an orthogonal polynomials expansion technique54,76,77 to trans-

form the above integro-di�erential equation for the potential at the graphene, �(r) � �(r; ’),

into a standard linear algebra eigenproblem. This is done by expanding the electrostatic po-

tential evaluated at the graphene layer as �(r) =
P

n cnL
(0)
n (qr)e�qr=2 , with L

(0)
n denoting
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the generalized Laguerre polynomials,78 and where the cn's are the entries of the eigenvectors

de�ned by the following eigensystem (obtained by exploiting the appropriate orthogonality

relations78):

i!

q�(!)
cm =

1X
n=0

Umncn ; (3)

where the matrix elements Umn read

Umn =

Z 1
0

Z 1
0

dxdy G(x; ’; y; ’)e�
x+y

2 L(0)
m (x)

�
�

3

4
L(0)
n (y)� L(2)

n�2(y)� L(1)
n�1(y)

�
: (4)

We note that the double integration over the dimensionless variables x = qr and y = qr0 can

be performed analytically, thereby making the computation of the matrix elements extremely

fast. Notice that we have dropped the index j in the Green's function because the boundary

condition at � = ’ enforces that G1(x; ’; y; ’) = G2(x; ’; y; ’), and therefore one can choose

either Green's function arbitrarily without any loss of generality.

The eigenvalue equation (3) can be solved numerically using standard linear-algebra

routines. Once we �nd the corresponding eigenvalues ~�n (whose number matches the length

of the vector ~c, i.e. N + 1, where N truncates the expansion for �(r), and convergence

was checked empirically�cf. SI), the spectrum of graphene plasmons traveling along the

triangular wedge/groove straightforwardly follows from

i!

q�(!)
= ~�n ; (5)

where, for a given opening angle 2’, Eq. (5) returns a discrete set of WGPs/GGPs modes.

We stress that all the momentum and frequency dependence stems from the LHS of the pre-

vious equation; hence, the eigenvalues ~�n � ~�n(’) carry a purely geometric meaning since

they depend uniquely on the con�guration of the system (opening angle and material param-

eters). In particular, using graphene's Drude-like conductivity with negligible damping,54
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one obtains a �universal scaling law� for the dispersion relation of wedge/groove graphene

plasmons,


(q) = 
at(q)
2

�

p
�n ; (6)

where the relation ~�n = 4
�2�0(�1+�2)

�n has been used, and stems from factorizing a constant

proportionality factor entering in the Green's function (see the text after Eq. (S33) in the SI).

The above equation gives the energy of the guided graphene plasmon modes parameterized

by the propagation constant along the apex of the wedge. Here, 
at(q) =
q

4�~c
�1+�2

EF q is

simply the dispersion relation followed by GSPs in �at graphene54 sandwiched between two

dielectrics with �1 and �2 (where � ’ 1=137 denotes the �ne-structure constant). Notice that

once we have determined �n, we possess complete knowledge of the WGPs/GGPs spectrum�

for any point in the entire (q; !)-space �, all of this with only one computation. In fact, we

can even plot the dispersion of distinct 2D materials that support SPPs modes from a single

computation of �n, since the latter does not depend on the 2D conductivity that characterizes

the particular 2D material [recall Eq. (5)]. It is instructive to note that, in general, the

spectrum of WGPs/GGPs contains a discrete set of even and odd modes (although here

we describe only modes with odd-symmetry for the reason stated above in the text), in a

similar way to SPPs supported at metallic wedges/grooves.36 This is a consequence of the

lateral con�nement near the tip of the wedge (or the bottom of the groove), and bears some

resemblance to �nding the electronic eigenstates of a particle in a quantum wire.79

In Fig. 2 we have plotted the dispersion relation of graphene plasmons guided along

the edge of triangular wedges and grooves with di�erent opening angles, 2’ (indicated in

the insets), which, as we have already anticipated, consists in a discrete set of well-de�ned

modes with increasing energy. The �gure plainly shows that the spectrum of both WGPs and

GGPs strongly depend on the angles of the triangular opening, with smaller angles rendering

correspondingly larger plasmon wavevectors for the same frequency, which in turn is an indi-

cation of stronger �eld con�nement near the apex of the V-shape. Another striking feature

visible in the �gure is the outstanding agreement between the quasi-analytic theory detailed

9
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q (µm

Figure 2: Spectrum of WGPs (upper row) and GGPs (�rst two bottom panels) sustained
in di�erent graphene-covered triangular con�gurations, with di�erent opening angles, 2’
(indicated in the insets), as given by Eq. 6 [we take EF = 0:4 eV]. The solid black line
represents the dispersion of GSPs in a �at interface and serves as reference. The colored5,
and4 data points �guring in the upper row correspond to the results for the WGP dispersion
as obtained from full-wave numerical simulations (COMSOL's �nite-element method). The
insets' shading represents an insulator with � = 4, whereas the white regions denote a
medium with � = 1 (e.g. air). The last panel shows the spectrum of GSPs guided along a
V-shaped graphene embedded in a homogeneous medium with � = 2:5 (shaded in the inset
as ).
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above and the electrodynamic simulations using the FEM technique (see SI for details on the

simulations). This constitutes further evidence of the ability of our quasi-analytic method

to render accurate results, while also providing a deeper fundamental understanding of the

scaling properties. Also from the inspection of Fig. 2, a strong contrast can be perceived be-

tween the dispersion curves akin to WGPs and GGPs, demonstrating the superiority of the

former in squeezing light below the di�raction limit as they attain larger wavevectors for the

same angle of the structure. We further note that one can transform a wedge into a groove

and vice-versa either by swapping the values of � or by applying the angular transformation

’! � � ’ (this essentially interchanges the Green's functions G1 and G2). For the sake of

completeness, in Fig. 2f panel we have portrayed the spectrum of GSPs guided along a tri-

angular apex embedded in a homogeneous dielectric medium with the same average relative

permittivity as its wedge and groove counterparts. It can be observed that�for the same

angle�each of the modes attain increasingly larger wavevectors as we move from a groove,

embedded and wedge con�guration (in this order). This hints us that the ability to reach

deep subwavelength regimes strongly depends on the �2=�1 ratio, for a �xed (acute) angle.

Such prediction is con�rmed by Fig. 3, in which we observe that the scaling factor appearing

in Eq. (6) decreases monotonically with increasing �2=�1. In turn, this translates into higher

e�ective indexes, ne� = q=k0, for larger quotients �2=�1. As an example, we have obtained

ne� ’ 72 for a frequency of 20 THz in a con�guration corresponding to panel in Fig. 2b.

Even larger e�ective indexes can be obtained at higher frequencies (for instance, for the CO2

laser wavelength of 10:6�m this value climbs to ne� ’ 100, using the same parameters).

Naturally, the higher amount of �eld localization promoted by the WGP/GPP modes comes

hand in hand with slightly larger propagation losses (cf. SI), a trait that is well-known and

characteristic of plasmonics. Still, we have found that the number of plasmon oscillations

within a propagation length4,54 remains unaltered when comparing between di�erent mode

orders or �at-GSPs (see SI for further details). Indeed, owing to the �universal scaling�

epitomized by Eqs. (5) and (6), the ratio between loss and �eld con�nement is independent
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Figure 3: Dependence of the eigenvalues akin to the fundamental mode�in fact, of the
proportionality factor, 2��1

p
�, �guring in Eq. (6)�as a function of the ratio �2=�1. In

computing the data in blue we have �xed �1 = 1 while varying �2, and vice-versa for the
red data points. The vertical green dashed line indicates the point where �1 = �2 = 1,
whereas the horizontal gray dashed line sets the upper bound corresponding to the �at GSP
dispersion. We further note that the value of � is also sensitive to the absolute value of the
dielectric constant that is kept constant while the other varies.

of the mode order and is the same as for �at-GSPs.

Before concluding the analysis of Fig. 2, we highlight the capability of these guided GSPs

modes to render extreme light-localization. This ability can be appreciated by considering

the distance of their dispersion curves to the light-line (yellowish dashed-line near the vertical

axis) and the large e�ective indexes that were obtained. This departure from the light-cone

also justi�es the high accuracy in the treatment of these modes within the electrostatic limit,

as retardation e�ects are negligible and GSPs possess an essentially electrostatic character.

Potential and electric-�eld distributions. Furthermore, we remark that the solution of

the eigenproblem in Eq. (3) also allows us to reconstruct the electrostatic potential within the

graphene by feeding the obtained eigenvalues and eigenvectors back into the expansion for

�(r). From here, the 2D particle-density directly follows via n(r) = �(!)
ie!

[@2=@r2 � q2]�(r)

(see SI). Both these physical quantities, evaluated at the graphene's surface, that is � = ’ (at

� = �’ the distributions are antisymmetric), are shown in Fig. 4. Here, we consider WGPs

with frequency f = 20 THz guided along a 2’ = 25� triangular wedge (which corresponds

to the case illustrated in Fig. 2b).
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Figure 4: Radial distributions of the electrostatic potential, �(r) � �(r; ’), and 2D particle
density, n(r), for the three lowest eigenmodes of a 25� wedge covered with graphene (in
a.u.), at a resonant frequency of f = 20 THz. The radial coordinate is plotted in units of the
inverse wavevector akin to each mode [obtained by inverting Eq. (6) for a angular frequency
of ! = 2� � 20 THz]. The remaining parameters are the same as in Fig. 2b (i.e., �1 = 1,
�2 = 4, and EF = 0:4 eV).

Figure 4 indicates that the highest density of charge-carriers occurs at the apex of the

wedge, irrespective of the mode order, although the density drops towards zero at increasingly

larger distances from the origin for the higher-order modes. In addition, we note that q�1
3rd >

q�1
2nd > q�1

1st for the same frequency, which makes the di�erence in the con�nement even more

dramatic. We emphasize that the number of nodes of both �(r) and n(r) is given by m� 1,

where m = 1; 2; ::: (for modes below the �at GSP dispersion curve) stands for the mode

order. On the other hand, the value of the potential evaluated at the graphene layer is large

near the vertex of the triangular cross-section, specially for the fundamental mode (where

it is maximum). We acknowledge that, however, it is not located exactly at r = 0. This

is consequence of the in�nitely sharp apex, whose corresponding Green's functions strongly

oscillate at very small r, since they are not well-de�ned (but are bounded, i.e. do not diverge)

in the r ! 0 limit. Conversely, for modes with higher energy, the potential tends to shift its

weight farther from the apex of the V-structure as the mode order increases. Such behavior
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was already expected in the light of Fig. 2, since the WGP wavelength becomes smaller

as the mode order decreases; as a consequence, the fundamental WGP mode exhibits the

highest �eld-con�nement, thereby being able to probe deeper into the V-wedge owing to

its shorter wavelength when compared to the higher branches of the polaritonic spectrum.

Again, we stress that although our model assumes in�nitely deep triangular cross-sections,

it can accurately describe �nite-sized V-shapes as long as the height (depth) of the wedge

(groove) is located at a distance somewhere along the �tail� of the quantities plotted in

Fig. 4 (where they are essentially zero). In passing, we note that apart from the plasmon

modes located at the apex of, say, a wedge (2’ opening angle), the modes sustained at the

corresponding �grooves�, originating from the truncation of the structure�forming a �=2+’

angle�, can also be determined using the same guidelines as above, provided that the height

of the wedge is large enough to prevent the hybridization of the modes. The same reasoning

also holds for grooves.

We recall that once in possession of the potential evaluated at the graphene, one can build

the potential in the entire coordinate space using Eq. (2). From here, the corresponding

induced electric �eld follows directly by taking the gradient, i.e. E(r) = �r�(r). In what

follows, we shall discuss only the spatial distributions of the potential and electric �eld within

the plane transverse to the propagation direction, since its dependence along the z-axis is

trivial due to the translational invariance of the system along this direction. The calculated

2D distributions (in the xy-plane) of the potential and concomitant electric �eld akin to

WGPs in a representative 2’ = 25� dielectric wedge are shown Fig. 5. Note that the

electric �eld in cartesian coordinates can be fetched from its polar version by applying a

rotation matrix, namely (Ex; Ey)
T = R(’)(Er; E�)

T . The �gure exhibits telling evidence of

the remarkable con�nement WGP are able to attain near the apex of the wedge (the results

for the groove are qualitatively similar, albeit with slightly less localization for the same

resonant frequency); this can be observed both from the induced potential or the electric-

�eld. The intensity plot in the background of the vectorial representation of the 2D E(x; y)
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Figure 5: Two-dimensional potential, �(x; y), and electric-�eld distributions, E(x; y) =
�r2D�(x; y), ascribed to the fundamental (upper panels) and second order (lower pan-
els) WGPs modes, at a resonant frequency of f = 20 THz. The parameters used in these
computations match the ones in Fig. 4. The plotted region is the same in each pair of
2D plots, with axes of the panels on the left written in dimensionless units (normalized to
the corresponding propagation constants) and the axes of the plots on the right are given in
nanometers.

refers to the value of the y-component of this quantity, which is dominant in most of the

spatial region. Notice that since the potential has odd symmetry with relation to the y = 0

plane, then the correspondent component of the electric �eld must be of even symmetry.

It should also be highlighted that the vertical con�nement (with respect to the apex edge)

decreases rather rapidly as we move from the fundamental resonance to the higher order

branches of the polaritonic spectrum. For the particular case depicted in the �gure, the
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lowest energy mode essentially remains localized within the �rst 200 nm, whereas for the

second order mode that distance grows beyond 3:6�m. Figure 5 also serves to support our

previous claim that despite inherent simpli�cations in our theory, it may still be applied to

realistic wedges (grooves) of �nite height (depth). More speci�cally, the results portrayed

in the �gure accurately describe the 1st WGP in a 200nm-tall dielectric wedge, or, instead,

both WGPs modes in a wedge with about 4�m in height.

The behavior of the spatial distributions displayed in Fig. 5 is qualitatively maintained

throughout most of the dispersion curve (and similarly for di�erent angles), the only im-

portant di�erence being the degree of con�nement in the whereabouts of the apex edge.

Therefore, an in�nitely vast number of V-shaped geometric con�gurations, with di�erent

angles, heights or depths, may be engineered depending on the required level of localization

and/or frequency region of interest. In this regard, one can use our model to e�ectively

design and architecture a device which meets the pre-established requirements in terms of

operating frequency range and dimensions.

Concluding Remarks and Outlook

In summary, we envision the exploitation of the folding of an otherwise planar graphene

sheet�or any other SPP-supporting 2D material�into an (out-of-plane) triangular-like

shape as a mean to achieve deep subwavelength waveguiding and light-localization using

the plasmon modes guided along the apex of a V-shaped substrate. The fabrication of such

devices is well within reach of current experimental state-of-the-art capabilities, as much of

the technology has already been developed in the context of traditional 3D metal plasmon-

ics. As an example, nanoimprint approaches developed for metal grooves80 could be readily

applied also to the present case. The same goes in what concerns potential mechanisms to

excite these modes, since the same techniques used to excite CPPs could also be applied

to excite WGP/GGP modes (e.g. end-�re coupling or excitation by fast electrons).36 In
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this article, we have outlined a quasi-analytic method to theoretically describe graphene

plasmons either guided along the ridge of a dielectric wedge or along the valley of a groove

carved in an insulating substrate. The model accurately obtains the spectrum of the plas-

monic eigenmodes supported by the aforementioned structures, as well as the potential and

electric �eld distributions akin to those excitations. The computed modal distributions ad-

vocate the ability of these modes to achieve large �eld-enhancements and to deliver strong

light-localization in the neighborhood of the triangular edge. Interestingly, we have found

that the dispersion of each particular WGP/GGP mode obeys a universal scaling law, in

the sense that the functional dependence of the �at-GSP spectrum is maintained up to a

multiplication constant that depends solely on the particular geometric con�guration of the

system (i.e., the angle ’ for a given �1 and �2). The results of our calculations were veri�ed

by performing rigorous electrodynamic simulations based on the FEM, to which a very good

agreement was observed. We note, however, that the quasi-analytical model presented above

not only provides more physical insight when gauged against numerical simulations, but is

also far less computationally demanding and less time-consuming that the latter, since all

the eigenmodes for a given structure can be determined at once from a single computation.

Moreover, we have showed that WGPs and GPPs may be suitable candidates for versatile

platforms (specially when taking advantage of the gate-tunability of graphene plasmons) to

e�ectively route highly con�ned EM radiation. In this context, subsequent theoretical inves-

tigations of wedges/grooves with more realistic, rounded edges should constitute the basis

of future work. The rounding of the apex leads to a slight decrease in the e�ective index

of the plasmon modes, as shown by our �nite-element simulations (cf. SI). Nevertheless,

we expect our results to be qualitatively robust with respect to rounding. Furthermore, it

was demonstrated that even for in�nitely sharp metallic apexes, non-local e�ects prevent

the emergence of singularities at the tip.81 The case of a 2D layer deposited on a V-shaped

substrate with a frequency-dependent dielectric function, e.g. a metal or a polar medium,

can also be considered using the theory developed here. In addition, the e�ects of strain
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owing to the folding of the 2D sheet around the apex remain largely unexplored in what

concerns their implications in plasmonic excitations [for instance, in electronic transport it

is well-known that strain introduces a scattering potential for the 2D Dirac fermions (via

a gauge �eld) which can lead to the modi�cation of the bandstructure].82,83 We thus ex-

pect that this work will fuel future experimental realizations of WGPs/GGPs, as we believe

that such modes may hold interesting implications for future all-photonic circuitries at the

nanoscale.
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Abstract

We derive, in the electrostatic limit, the dispersion relation for graphene plasmons

(GPs) supported by a triangular-like interface between two dielectric media. These

graphene channel plasmons possess as main characteristics the ability to con�ne the

electric �eld also in the lateral direction and act as subwavelength one-dimensional (1D)

waveguides. In this supporting information we describe the derivation of the equations

given in the main article with utmost detail, while also outlining the calculation of the

Green’s function akin to a V-shaped interface between two insulators. Propagation

losses are also discussed, and compared against the losses of �at-GPs. Finally, we
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critically analyze the dependence of the concurrently conducted �nite element method

(FEM) simulations on the radius of the curvature at the triangular apex, since the

numerical simulations�contrarily to the analytics�cannot rigorously cope with the

in�nitely sharp edge of the V-structure.

Statement of the problem

For the sake of clarity we consider only wedge graphene plasmon (WGP) modes. The deriva-

tion for the groove follows by exploiting the symmetries with respect to the interchange of

dielectric constants or the replacement ’! � � ’.

In order to derive the plasmon modes supported by a dielectric wedge covered with

graphene in the electrostatic limit, we need to solve Poisson’s equation,

r2�(r) = �
�(r)
�0

: (S1)

The one-dimensional (1D) wedge possesses translational symmetry along the z-direction;

therefore, we decompose both the electrostatic potential and the charge-density as (in cylin-

drical coordinates)

�(r) = �(r; �)eiqz ; (S2)

�(r) = �(r; �)eiqz ; (S3)

where we have omitted the usual time-dependence of the form e�i!t for the sake of clarity.

The above procedure e�ectively transforms a three-dimensional (3D) problem into a two-

dimensional (2D) one:

r2
2D�(r; �)� q2�(r; �) = �

�(r; �)
�0

; (S4)

where r2
2D = @2

r + r�1@r + r�2@2
� is the transverse part of the Laplacian in cylindrical

coordinates.
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The solution of Eq. (S4) yields the wedge graphene plasmons (WGPs) that propagate

along the longitudinal direction. To �nd such modes, �rst we need to compute the Green’s

function for a wedge-like interface between two dielectric media.1,2 That exercise is the

subject of the next section.

Green’s function of a wedge-like interface

The Green’s functions of a wedge-like interface between two materials with relative permit-

tivities �1 and �2, as shown in Fig. S1, are de�ned through the expressions,

Figure S1: Wedge interface�with an opening angle of 2’�between two dielectric media character-
ized by relative permittivities �2 (for �’ � � � ’) and �1 (for ’ � � � 2� � ’).

�
@2

@r2 +
1
r
@
@r

+
1
@r2

@2

@�2 � q
2
�
G1(r; �; r0; �0) = �

�(r � r0)�(� � �0)
�1�0r

; (S5)

for for ’ � � � 2� � ’, and

�
@2

@r2 +
1
r
@
@r

+
1
@r2

@2

@�2 � q
2
�
G2(r; �; r0; �0) = 0 ; (S6)

for �’ � � � ’. The boundary conditions connect the Green’s function in both regions of

the structure (these will be introduced explicitly shortly). We will determine the solution of
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Eqs. (S5) and (S6) by using the solutions of the corresponding homogeneous problem (which

is a particular solution of the inhomogeneous problem) as a basis to construct the (general)

solution of the above equations (subjected to the proper boundary conditions).1,2

To make the problem more amenable to handle we shall treat the cases of even and

odd symmetries separately. Therefore, we will only need to solve the problem in, say, the

upper-half space (i.e., y � 0 or 0 � � � �).

Even symmetry case

The solution of the homogeneous equation corresponding to Eqs. (S5) and (S6) is separable in

a radial part, whose eigenfunctions are modi�ed Bessel functions of imaginary order Ki�(x),

and an angular part, whose eigenfunctions are hyperbolic trigonometric functions. The

variable � must satisfy <ef�g � 0 since we are looking for plasmonic modes. Thus, for the

even case, the Green’s function characterizing the potential felt at (r; �), in the absence of

graphene, due to an elementary charge placed at (r0; �0) then reads

Ge
2(r; �; r0; �0) =

Z 1

0
d�Ki�(qr)Ae� cosh(��) ; 0 � � � ’ ; (S7)

Ge
+(r; �; r0; �0) =

Z 1

0
d�Ki�(qr)

�
Be
� cosh(��) + Ce

� sinh(��)
�

; ’ � � � �0 ; (S8)

Ge
�(r; �; r0; �0) =

Z 1

0
d�Ki�(qr)De

� cosh[�(� � �)] ; �0 � � � � ; (S9)

where the coe�cients Ae� to De
� are determined by imposing the boundary conditions holding

for this system, namely

Ge
2(r; �; r0; �0)j�=’ = Ge

+(r; �; r0; �0)j�=’ ; (S10)

�2
@
@�
Ge

2(r; �; r0; �0)j�=’ = �1
@
@�
Ge

+(r; �; r0; �0)j�=’ ; (S11)

Ge
+(r; �; r0; �0)j�=�0 = Ge

�(r; �; r0; �0)j�=�0 ; (S12)
@
@�
Ge
�(r; �; r; �0)j�=�0 �

@
@�
Ge

+(r; �; r0; �0)j�=�0 = �
r
�1�0

�(r � r0) : (S13)
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Equations (S10)-(S13) form a linear system for the coe�cients Ae� to De
�. After some algebra,

one �nds that

Ae� =
2T

�2�2�0
Ki�(qr0)

sinh(��) cosh[�(� � 2�0)]
sinh(��)�R sinh[�(� � 2’)]

; (S14)

[where the result
R1

0
dx
x Ki�(x)Ki�0(x) = �2�(���0)

2� sinh(��) (for �; �0 > 0) has been used3] with

R =
�2 � �1
�2 + �1

; (S15)

T =
2�2

�2 + �1
; (S16)

along with similar expressions for the remaining coe�cients (not shown for brevity). How-

ever, we will only need the A� in what follows, since we will be evaluating it at the interface

(where the charges are, that is, within the graphene monolayer).

Odd symmetry case

Following the same guidelines that lead to Eq. (S14), with the appropriate adaptations, one

obtains

Ao� =
2T

�2�2�0
Ki�(qr0)

sinh(��) sinh[�(� � 2�0)]
sinh(��) +R sinh[�(� � 2’)]

; (S17)

corresponding to the odd-symmetry Green’s function in medium 2, that is,

Go
2(r; �; r0; �0) =

Z 1

0
d�Ki�(qr)Ao� sinh(��) ; 0 � � � ’ : (S18)

Summary: Green’s functions (even and odd)

In possession of Eqs. (S7), (S14) and (S17)-(S18), we may write

Ge
2(r; �; r0; �0) =

2T
�2�2�0

Z 1

0
d�Ki�(qr)Ki�(qr0)
e(�; �0) ; (S19)
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where we have introduced the function,


e(�; �0) =
sinh(��) cosh(��) cosh[�(� � 2�0)]

sinh(��)�R sinh[�(� � 2’)]
; (S20)

and,

Go
2(r; �; r0; �0) =

2T
�2�2�0

Z 1

0
d�Ki�(qr)Ki�(qr0)
o(�; �0) ; (S21)

with


o(�; �0) =
sinh(��) sinh(��) sinh[�(� � 2�0)]

sinh(��) +R sinh[�(� � 2’)]
: (S22)

Note that, naturally, the only di�erence between the even and odd symmetry Green’s func-

tions is encapsulated in the functions 
e=o(�; �0) which contain all the angular dependence.

The Green’s functions in medium 1 may be derived following similar steps.

Remark: for the particular case where ’ = �=2, the above Green’s functions are not a

suitable representations for those of a planar interface. This is because the homogeneous

solutions of the corresponding Laplace equation are no longer the same as in the cylindrical

symmetry case, and therefore our procedure above would need to be adapted accordingly

for that speci�c case�see, for instance, Ref. 4 for further details.

Graphene Plasmons in the Wedge Geometry

Having derived the Green’s functions of a wedge-like interface, we can now proceed towards

the solution of Poisson’s equation [cf. Eq. (S4)],

�
@2

@r2 +
1
r
@
@r

+
1
@r2

@2

@�2 � q
2
�

�(r; �) = �
�(r; �)
�0

; (S23)
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whose solution may, in general, be written as

�(r; �) =
Z 1

0
dr0r0

Z 2�

0
d�0G2(r; �; r0; �0)�(r0; �0) : (S24)

Here, the density of charge carriers may be expressed in the form

�(r; �) = �e n(r)
�(� � ’)

r
; (S25)

where n(r) accounts for the 2D particle-density along the radial coordinate. On the other

hand, the 2D continuity equation dictates (in frequency domain)

n(r) =
i
!e
r2D � J2D

=
�(!)
i!e

�
@2

@r2 � q
2
�

�(r; ’) ; (S26)

where, in the last equality, we have employed Ohm’s law, and where �(!) denotes the

dynamical conductivity of graphene. Having an explicit expression for n(r), one may now

use Eqs. (S25) and (S26) to simplify Eq. (S24) substantially, in particular

�(r; �) =
i�(!)
!

Z 1

0
dr0G2(r; �; r0; ’)

�
@2

@r02
� q2

�
�(r0; ’) : (S27)

Notice that the potential in the whole space can only be derived once the potential at the

graphene sheet is determined. The determination of �(r0; ’) is outlined below.

Solution of �(r0; ’) via orthogonal polynomials expansion

Equation (S27), at � = ’, reduces to

�(r) =
i�(!)
!

Z 1

0
dr0G2(r; ’; r0; ’)

�
@2

@r02
� q2

�
�(r0) : (S28)
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Here, we have de�ned �(r) � �(r0; ’). The previous equation stands as an integro-di�erential

equation for the scalar potential �(r), and we are not aware of an analytical solution. In what

follows, we will solve Eq. (S28) using the orthogonal polynomials expansion technique;5�7

within this approach, it is possible to convert the above integro-di�erential equation into a

standard linear algebra eigenproblem. To that end, we expand the electric potential at � = ’

using Laguerre polynomials, Ln(x) as a complete set of basis functions, namely

�(r) =
1X

n=0

cnLn(qr)e�qr=2 : (S29)

In order to arrive at an eigenvalue problem, all we need to do is to substitute this expansion

into both sides of Eq. (S28), followed by the exploitation of the orthogonality of Laguerre

polynomials
�
explicitly,

R1
0 dx e�xLn(x)Lm(x) = �n;m

�
.8 Such procedure leads to the follow-

ing matrix equation
i!

q�(!)
cm =

NX

n=0

Umncn ; (S30)

where we have truncated the expansion in Eq. (S29) at N , and the elements of the matrix

U [of size (N + 1)� (N + 1)] read

Umn = �
Z 1

0
dy
Z 1

0
dxG2(x; ’; y; ’)e�

x+y
2 Lm(x)

�
L(2)
n�2(y) + L(1)

n�1(y)�
3
4
Ln(y)

�
; (S31)

where the dimensionless variables x = qr and y = qr0 have been introduced, and L(k)
n (x) refer

to the generalized Laguerre polynomials.8 We note that both the integration over x and y

can be performed analytically; then, only the integration over � [which enters via the Green’s

function�cf. Eqs. (S19) and (S21)] needs to be carried out numerically. This makes the

computation of the matrix elements extremely fast. The eigenvalue equation (S30) can be

solved numerically using standard linear algebra routines. Once we �nd the corresponding

eigenvalues (whose number matches the size of the vector ~c, that is, N + 1), the spectrum

8



of graphene plasmons traveling along the triangular wedge follows from

i!
q�(!)

= ~�n ; (S32)

where, for a given frequency, Eq. (S32) returns the discrete wedge GPs modes. In particular,

using graphene’s Drude-like conductivity with negligible damping,7 one obtains the following

relation for the dispersion relation of wedge graphene plasmons (WGPs) [and for grooves

alike],


(q) = 
at(q)
2
�

p
�n ; (S33)

where the (re)de�ned eigenvalues �n stem from ~�n = 2T
�2�2�0

�n = 4�n
�2�0(�1+�2) , that is, we have

explicitly factorized the proportionality factor 2T
�2�2�0

appearing in the Green’s function (S21).

The above equation gives the WGP’s energy, 
(q), parameterized by the propagation con-

stant along the apex of the wedge. Here, 
at(q) =
q

4�
�1+�2

EF~cq stands for the dispersion

relation for plasmons in �at graphene (sandwiched between two dielectrics with �1 and �2; �

denotes the �ne-structure constant). Note that the spectrum of WGPs contains a discrete

set of even and odd modes [depending of whether we use Ge
2(x; ’; y; ’) or Go

2(x; ’; y; ’) in

Eq. (S31)].

The dispersion relation akin to the �rst three waveguide-like wedge graphene plasmons is

shown in Fig. S2, obtained by virtue of Eq. (S33). It is interesting to note that, within our

theory, the spectrum of each WGPs mode is simply the spectrum of a �at GPs multiplied by

a proportionality constant related to the corresponding eigenvalue, as Eq. (S33) and Fig. S2

plainly show. This proportionality constant, as highlighted in the main manuscript, depends

uniquely in the opening angles, 2’, and material parameters, and therefore carries a purely

geometric meaning.

By solving the linear algebra problem posed by Eq. (S30) we can now reconstruct any
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Figure S2: Dispersion relation of graphene plasmons�with even and odd symmetry�guided along
a graphene-covered dielectric wedge (�rst three modes), obtained using Eq. (S33). The solid black
line depicts the spectrum of plasmons in a �at graphene. Parameters: EF = 0:4 eV, �1 = 1, �2 = 4,
and 2’ = 25�. We have used N = 12 for the truncation of the sum/matrix.

physical quantity we want from the corresponding calculated eigenvalues and eigenvectors.

Recall that the (radial) electrostatic potential evaluated at � = ’ (the graphene sheet),

according to Eq. (S29), has the form

�(r; ’) = �(r) =
X

n

cnLn(qr)e�qr=2 : (S34)

The transverse part of the electric �eld then follows from

E(r; �) = �r2D�(r; �) ; (S35)

Alternatively, in cartesian coordinates, the components of the electric �eld in the xy-plane

read 0

B@
Ex

Ey

1

CA =

0

B@
cos’ � sin’

sin’ cos’

1

CA

0

B@
Er

E�

1

CA : (S36)

We further note that�for small opening angles� the �-component of the electric �eld is

approximately equal to the component of the electric �eld projected along the y-axis, that
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is, E�(x; y) ’ Ey(x; y).

Propagation losses

Loss is a well-known issue in plasmonics. Here, we shall brie�y comment and compare the

propagation losses of the WGP/GPP modes against their �at-GP counterpart. To that end,

we cast Eq. (S32) as

q = f
1
~�n

) q /
1
~�n
/

1
�n

; (S37)

where the proportionality factor is f = i!=�(!). Losses can be quanti�ed by introducing

the propagation length, Lp, which is de�ned as Lp = (2=m q)�1; and essentially corresponds

to the distance the plasmon propagates until its intensity falls o� by 1=e. Hence, its value

decreases with increasing loss. Therefore, in the light of Eq. (S37) one can write

Lp =
~�n

2=m f
/ �n : (S38)

Since �n increases with the mode order (up to �2=4, corresponding to �at graphene), then the

propagation length is diminishes from the higher-order modes to the fundamental one. This

is shown in �gure’s S3 a) panel. Note, however, that the corresponding �eld con�nement

is largest for the fundamental mode. This trade-o� between �eld con�nement and loss is

characteristic of plasmonics. Still, multi-micrometer propagation can be easily obtained at

THz frequencies.

A perhaps more interesting result emerges when we compare the propagation length with

the corresponding plasmon wavelength. Such procedure indicates the number of plasmon

oscillations that occur within the propagation length. This is a much more fair comparison

because it measures the ratio between �eld localization and losses. The outcome is presented

in �gure’s S3 b) panel. There are two major features: �rst there is a maximum value for

Lp=�WGP (do not confuse it with the eigenvalue �n); second, and more importantly, one can

11



0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f (THz)

L p
(��

m
)

flat- GP

1st WGP

2nd WGP

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

f (THz)

L p
(��

W
G

P
)

a) b)

Figure S3: Propagation loss. Left: propagation length in absolute units for the �at-GP (black line)
and the two lowest-energy WGP modes for a graphene-covered wedge with an opening angle of
2’ = 25�, EF = 0:4 eV, ~ = 3:7 meV9, �1 = 1 and �2 = 4 (similar results can be obtained for
grooves). Rigth: propagation length in units of the graphene plasmon wavelength corresponding
to each mode. Graphene conductivity was modeled according to Kubo’s formula (both intra- and
inter-band contributions) at zero temperature.7

observe that the ratio Lp=�WGP, at any frequency, remains the same despite the mode order,

and it is fact the same as for the �at-GP. Such behavior can be understood by noting that

both the real and imaginary parts of q possess the same functional dependence on �n (or

~�n), and thus
Lp

�WGP
/
<e q
=m q

) independent of �n ; (S39)

that is, Lp=�WGP is independent of �n (~�n), and therefore this quantity is universal for

both WGP, GGP, and �at-GPs, as the �gure demonstrates. This characteristic is direct

consequence of the �universal scaling law� stated by Eq. (S32).
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Convergence of the solution via orthogonal polynomials

expansion

Figure S4 clearly shows that the solution (for the �rst three modes) via orthogonal polynomi-

als expansion technique converges fast with the number of polynomials used in the expansion

for the electrostatic potential.
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Figure S4: Same as Fig. S2, but using di�erent values for the expansion truncation, N , to check
the method’s convergence.

2D Electric �eld distributions of WGP odd modes: further

details

Further details on the 2D spatial distributions of the electric �eld akin to WGP odd modes.

0 2500 5000 7500 10000 12500

1st WGP

- 3000 - 2000 - 1000 0 1000 2000 3000

Figure S5: Both angular and radial components of the electric �eld (a.u.) akin to the �rst WGP
odd mode. The parameters are the same as in Fig. S2. Only the region �’ < � < ’ is shown.
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Figure S6: Comparison between the components of the electric �eld (a.u.) projected along �̂ (right
panel) and ŷ (right panel). The parameters are the same as in Figs. S2 and S5. Note that
E�(x; y) ’ Ey(x; y). Only the region �’ < � < ’ is shown.

Dependence of FEM simulations on the rounding of the

edge

Fully numerical simulations (with a local-response dielectric function) cannot handle in-

�nitely sharp boundaries. For this reason, it was necessary to round (smooth) the otherwise

sharp apex of the triangular wedge in our full-wave electrodynamic FEM simulations im-

plemented in COMSOL Multiphysics commercial software. The in�uence of the radius of

curvature (rounding) on the WGPs’ wavevector is shown in Fig. S7. It can be observed

from the �gure that, as the radius of curvature (Rc) of the edge decreases, the value for the

WGP propagation constant predicted by the simulations (dots) successively approaches the

propagation constant given by our quasi-analytic model (dashed horizontal lines). However,

if one takes the limit when Rc ! 0 the WGP wavevector eventually diverges to in�nity. The

e�ect is more dramatic for the fundamental mode than for the second order mode because

the former possesses a smaller wavelength and therefore probes more deeply within the V-

shape. In order to cope with this unavoidable nuisance we have chosen a very small radius

of curvature, to mimic the (idealized) in�nitely sharp interface considered here, but in such a

way that it is not too small to produce divergences. Therefore, we have taken Rc = 0:25 nm

in our FEM numerical simulations (corresponding to the third data point counting from the
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left), a number within the ballpark of the 0:34 nm thickness of a monolayer of sp2-hybridized

carbon. Notice that values in the neighborhood of this value give similar results.

0.0 0.5 1.0 1.5 2.0
Rounding (radius of curvature in nm)
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q r
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1st WGP (COMSOL)

2nd WGP (COMSOL)

1st WGP (Theory)

2nd WGP (Theory)

Figure S7: Guided graphene plasmon’s wavevector, for f = 20 THz, as a function of the radius of
curvature of the apex of the wedge. Note that the numerical solution�as expected�is sensitive
to the parameter, since it cannot cope with in�nitely sharp edges. The quasi-analytical model
(horizontal dashed-lines), however, automatically handles the singularity at r = 0 by using the
appropriate (analytic) Green’s functions. Remaining parameters: EF = 0:4 eV, �1 = 1, �2 = 4, and
2’ = 25�.

Lastly, we note that in our COMSOL Multiphysics simulations the graphene sheet is

modeled as a layer of (e�ective) �nite thickness, te� = 1 nm, with dielectric function �g(!) =

1 + i�D(!)
!�0te�

where �D(!) is the Drude conductivity of graphene.7
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