The impact of dietary swine plasma immunoglobulins on intestinal microbiota and general health in weaner piglets

Hedegaard, Chris Juul; Strube, Mikael Lenz; Jensen, Tim Kåre; Heegaard, Peter M. H.

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Background
Post-weaning diarrhoea (PWD) is a common condition in intensive swine disease and death, and associated treatment costs. Antibiotics are standard treatment against PWD. Antibiotics and zinc oxide, and economic losses for the farmer as a result of pig production, resulting in reduced welfare of weaners, high consumption of feed, and observed. Hence, ppIgG does not alter the normal commensal microbiota in healthy weaner piglets.

Conclusions
No adverse side effects were observed by using ppIgG as a feed supplement.

These results suggest that ppIgG could be used for treatment of PWD and reduce antibiotic consumption.

Aim
To investigate if ppIgG modulates healthy weaner piglet intestinal microbiota and general health.

Study 1:

Pathology

<table>
<thead>
<tr>
<th>Number of incidences of:</th>
<th>Multimerised IgG</th>
<th>4 gr IgG</th>
<th>Denat. IgG</th>
<th>PBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enteritis</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Avg. ileum villi/crypt ratio</td>
<td>1.4</td>
<td>1.4</td>
<td>1.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Avg. colon crypt depth (µm)</td>
<td>483</td>
<td>552</td>
<td>501</td>
<td>634</td>
</tr>
</tbody>
</table>

Study 2:

<table>
<thead>
<tr>
<th>Number of incidences of:</th>
<th>4 gr IgG</th>
<th>1 gr IgG</th>
<th>Denat. IgG</th>
<th>PBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Villi atrophy, ileum</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Villi atrophy, jejunum</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Dilatation of crypt, caecum</td>
<td>0</td>
<td>0</td>
<td>1³</td>
<td>0</td>
</tr>
</tbody>
</table>

Pathological observations were carried out on tissues collected by autopsy. In Study 1 exocytosis (exudation of neutrophils) in colon and caecum were only observed in those two piglets that were euthanized due to severe illness within the first day of the study. Otherwise intestinal morphology of ileum and colon appeared normal in the remaining 10 piglets after 14 days of ppIgG supplement. In Study 2 two piglets in Group 1 (4 grams of ppIgG) and one piglet in Group 3 (denatured ppIgG) had less/smaller villi than normal. One piglets died the night between day 3 and 4 and pathological examinations showed slime-filled crypts in the caecum. Remaining 20 piglets showed no intestinal abnormalities. The overall conclusion from the pathological evaluation of the intestines was that ppIgG does not result in adverse effects.

Conclusions

- No adverse side effects were observed by using ppIgG as a feed supplement.
- ppIgG does not change intestinal microbiota in healthy weaner piglets.
- These results suggest that ppIgG could be used for treatment of PWD and reduce antibiotic consumption.

Figure 1: Weaner piglets were grouped according to treatment (see below) and observed for 15 days before they were euthanized. Different intestinal sections were emptied of faecal contents, and then and inspected for pathological changes.

A: Group 1 received daily 4 grams of multimerised ppIgG, Group 2 received 4 grams of ppIgG daily, Group 3 received daily 4 grams of denatured ppIgG, and Group 4 received daily 25 ml of PBS. Shortly into the study, two piglets (one in each group 1 and 4) became so ill they had to be euthanized. All piglets were euthanized at day 15.

B: Twenty-four four week old weaner piglets were placed in four groups: Group 1 received daily 4 grams of ppIgG, Group 2 received daily 1 gram of ppIgG, Group 3 received daily 4 grams of denatured ppIgG, and Group 4 received daily 20 ml of PBS. Shortly into the study (day 3) one piglet died in Group 3. All piglets were euthanized at day 15.

Figure 2: DNA was extracted from the content of either (A) ileum or (B) jejunum obtained at autopsy on day 15. The V1/V2 regions of the bacterial 16S rRNA gene was amplified by PCR using universal primers. The PCR-16S DNA-products were sequenced on the Illumina MiSeq™ 250PE platform, and the sequences were analysed using BION-meta software. Taxonomical classification at bacterial family level was done according to the Ribosomal Database Project II (RDP-II) SSU database.

Comparing the taxonomical classification data, the intestinal microbiota appears to differ equally within and between groups of weaner piglets, thus no significant differences were observed. Hence, ppIgG does not alter the normal commensal microbiota in healthy weaner piglets.