Multi-electrode probe optimization for characterization of magnetic tunnel junction stacks

Cagliani, Alberto; Kjær, Daniel; Østerberg, Frederik Westergaard; Hansen, Ole; Nielsen, Peter F.; Petersen, Dirch Hjorth

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Multi-electrode probe optimization for characterization of magnetic tunnel junction stacks

Alberto Cagliani a, b, Daniel Kjaer b, Frederik W. Osterberg a, b, Ole Hansen a, Peter F. Nielsen b and Dirch H. Petersen a

a Dept. of Micro and Nanotechnology, DTU Nanotech, Technical University of Denmark
b Capres A/S

E-mail: Alberto.Cagliani@nanotech.dtu.dk

One of the most important metrologies extensively used world-wide for evaluation of Magnetic Tunnel junction (MTJ) stacks is the current-in-plane tunneling (CIPT) technique. The CIPT method has been of fundamental importance in the development of MRAM technology in the past decade. Until now, the design of multi-electrode probes and choice of sub-probes have been based on a best guess practice. In this study, we perform a numerical optimization of the geometrical design of multi-electrode probes as well as optimal choice of subprobes. A drastic improvement in the measurement precision for the resistance-area product and the TMR is achieved.

![Micro 12 Point Probe (M12PP)](image)

Measurement Precision prediction

By modeling the main noise sources of the CIPT measurement the precision, intended as the relative standard deviation (STD) on RA and MR, can be predicted with a software tool. 4 different MTJ stacks and different probe geometries were tested.

M4P Subprobe sequence Optimization

Currently for every MTJ sample the same M4P subprobe sequence is used (STD sequence), with a electrode pitch ranging from 1.5 to 8.25 μm for a total of 8 M4P subprobes.

Optimization: The optimization software is able to test thousands of subprobe sequences to identify the sequences that maximize the precision on RA and/or MR, given a specific MTJ sample.

Electrode position Optimization

Currently for every MTJ sample the same M4P subprobe sequence is used for a fixed M12PP geometry.

Optimization: combining the optimization of the subprobe sequence and the optimization of the electrode positions an improvement up to 3 times can be achieved on the measurement precision of TMR and RA (for $\lambda = 0.68 \, \mu m$).

Bibliography