Multi-electrode probe optimization for characterization of magnetic tunnel junction stacks

Cagliani, Alberto; Kjær, Daniel; Østerberg, Frederik Westergaard; Hansen, Ole; Nielsen, Peter F.; Petersen, Dirch Hjorth

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Multi-electrode probe optimization for characterization of magnetic tunnel junction stacks

Alberto Cagliani, Daniel Kjaer, Frederik W. Osterberg, Ole Hansen, Peter F. Nielsen and Dirch H. Petersen

Dept. of Micro and Nanotechnology, DTU Nanotech, Technical University of Denmark

E-mail: Alberto.Cagliani@nanotech.dtu.dk

One of the most important metrologies extensively used worldwide for evaluation of Magnetic Tunnel junction (MTJ) stacks is the current-in-plane tunneling (CIPT) technique. The CIPT method has been of fundamental importance in the development of MRAM technology in the past decade. Until now, the design of multi-electrode probes and choice of sub-probes have been based on a best-guess practice. In this study, we perform a numerical optimization of the geometrical design of multi-electrode probes as well as optimal choice of subprobes. A drastic improvement in the measurement precision for the resistance-area product and the TMR is achieved.

Measurement Precision prediction

By modeling the main noise sources of the CIPT measurement, the precision, intended as the relative standard deviation (STD) on RA and MR, can be predicted with a software tool. 4 different MTJ stacks and different probe geometries were tested.

Bibliography
