Effects of dietary microplastic exposure on the organ toxicity of a mixture of chemical contaminants in zebrafish

Rainieri, Sandra; Conlledo, Nadia; Larsen, Bodil Katrine; Granby, Kit; Barranco, Alejandro

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Rainieri, S., Conlledo, N., Larsen, B. K., Granby, K., & Barranco, A. (2016). Effects of dietary microplastic exposure on the organ toxicity of a mixture of chemical contaminants in zebrafish. Poster session presented at 52nd European Congress of the European Societies of Toxicology (EUROTOX2016), Seville, Spain.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Effects of dietary microplastic exposure on the organ toxicity of a mixture of chemical contaminants in zebrafish

Sandra Rainieria, Nadia Conledoa, Bodil K. Larsenb, Kit Granbyc, Alejandro Barrancoa

aAZTI, Parque Tecnologico de Bizkaia, Astondo Bideia, Ed. 609, Derio, 48160, Spain
bNational Institute of Aquatic Resources, Technical University of Denmark, Nordsøen Forskerpark, Postboks 101, 9850, Hirtshals, Denmark
cNational Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, 2860, Søborg, Denmark

E-mail: srainieri@azti.es

\section{OVERVIEW}

- Effects of dietary exposure to microplastic and chemical contaminants on the organ toxicity of an aquatic animal model.
- Biological system used: zebrafish (\textit{Danio rerio}) adult fish.
- Exposure protocol based on evaluation of: stability, solubility and uptake of the compounds.
- Biological effects detected by microscopic observation, histopathology and evaluation of gene expression in different organs.
- Major effects were detected on the liver.

\section{INTRODUCTION}

Microplastic contamination of the aquatic environment is considered a growing problem. The ingestion of microplastic has been documented for a variety of aquatic animals. Studies have shown the potential of microplastic to affect the bioavailability and uptake route of sorbed co-contaminants such as persistent organic pollutants and metals. The effect of the dietary uptake of microplastic and sorbed co-contaminants in aquatic organisms still needs to be properly understood.

\section{OBJECTIVE}

To evaluate the biological effect at organ level of the dietary uptake of microplastic and sorbed co-contaminants in an aquatic model organism.

\section{METHODOLOGY}

\subsection{EXPERIMENTAL DESIGN}

- \textbf{Experimental design approved by the competent Ethical Committee.}
- \textbf{Samples:}
 - Sampling at end of experiment
 - Organs collected in pools of 4 in triplicate and homogenized

\subsection{FEED CONTENT}

<table>
<thead>
<tr>
<th>FEED CONTENT</th>
<th>DETAILS OF CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Not contaminated feed (\pm) Normal feed</td>
</tr>
<tr>
<td>B</td>
<td>Feed with microplastic (\pm) 2% LPDE 125-250 (\mu)m diameter</td>
</tr>
<tr>
<td>C</td>
<td>Feed with microplastic and contaminants As B with contaminant of Table 2</td>
</tr>
<tr>
<td>D</td>
<td>Feed with chemical contaminants Contaminants of Table 2 (x 2)</td>
</tr>
</tbody>
</table>

\section{RESULTS}

\subsection{MICROSCOPY OBSERVATION OF THE LIVER}

Liver gene expression

- Feed A: control
- Feed B Microplastic alone = no differential expression
- Feed C Microplastic + contaminants = highest levels of induction for all the genes tested.

Brain gene expression

- Feed A: control
- Feed B Microplastic alone = no differential expression
- Feed C Microplastic + contaminants = induction of genes CHRNA2 and ngn1.

Intestine gene expression

Only \textit{cyp1a1} is downregulated in fish fed with feed B.

\section{CONCLUSIONS}

Microplastic alone showed no effects on the exposed fish. Effects of microplastic + contaminants were detected in the liver. Microplastic affects the effect of chemical contaminants.

\section{ACKNOWLEDGEMENTS}

We are grateful to Michiel Kotterman (HANES Wageningen University) for providing microplastic and advice on this work.

Project funded by the European Commision (Project ECsafeSEARFOOD) and the Spanish Ministry of economy and competitiveness (Project CTQ2014-55711-R).