

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 13, 2024

Smart Grid Serialization Comparison

Petersen, Bo Søborg; Bindner, Henrik W.; You, Shi; Poulsen, Bjarne

Published in:
Computing Conference 2017

Link to article, DOI:
10.1109/SAI.2017.8252264

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Petersen, B. S., Bindner, H. W., You, S., & Poulsen, B. (2017). Smart Grid Serialization Comparison. In
Computing Conference 2017 (pp. 1339-1346). IEEE. https://doi.org/10.1109/SAI.2017.8252264

https://doi.org/10.1109/SAI.2017.8252264
https://orbit.dtu.dk/en/publications/1c92574a-9931-4664-a212-2174a6f107c4
https://doi.org/10.1109/SAI.2017.8252264

Computing Conference 2017

18-20 July 2017 | London, UK

1 | P a g e

Smart Grid Serialization Comparision
Comparision of serialization for distributed control in the context of the Internet of Things

Bo Petersen, Henrik Bindner, Shi You

DTU Electrical Engineering

Technical University of Denmark

Lyngby, Denmark

bspet@elektro.dtu.dk, hwbi@elektro.dtu.dk,

sy@elektro.dtu.dk

Bjarne Poulsen

DTU Compute

Technical University of Denmark

Lyngby, Denmark

bjpo@dtu.dk

Abstract—Communication between DERs and System

Operators is required to provide Demand Response and solve

some of the problems caused by the intermittency of much

Renewable Energy. An important part of efficient communication

is serialization, which is important to ensure a high probability of

delivery within a given timeframe, especially in the context of the

Internet of Things, using low-bandwidth data connections and

constrained devices. The paper shows that there are better

alternatives than XML & JAXB and gives guidance in choosing

the most appropriate serialization format and library depending

on the context.

Keywords—Smart Grid; Internet of Things; Serialization; XML;

JSON; YAML; FST, Kryo; JAXB; Jackson; XStream; ProtoStuff;

Gson; Genson; SnakeYAML; MsgPack; Smile; ProtoBuf; BSON;

Hessian; CBOR; Avro

I. INTRODUCTION

In a future Smart Grid with a large share of Renewable

Energy (EU 2020 & 2030 energy strategy), there will be

problems caused by the intermittent nature of most Renewable

Energy, especially solar and wind [1].

These problems primarily consists of times with either

excess or lack of energy from renewable power sources.

Excess power will be wasted, transported to other regions or

countries, stored or converted, all of which will cause a loss in

energy.

Lack of energy will cause the use of more economically or

environmentally expensive energy, in the form of non-

renewable energy, bio-fuels or stored energy.

The most efficient solution to these problems, if done right,

is Demand Response, which entails controlling consumption

units, especially heating, cooling and production units.

In addition, control of production units, which have the

capability to move their production can also help to solve these

problems.

For the control of these Internet of Things Distributed

Energy Resources (DER), both production and consumption

units, communication between the units and the System

Operators (Transmission System Operator, Distribution System

Operator and Balance Responsible Party) is crucial.

The choice of technology for this communication (e.g. Web

Services), called communication middleware is very important

to ensure that the control messages are received within a given

timeframe, depending on the needs of the power grid.

This need could be to avoid a fault, by initiating load

shedding, with a timeframe of seconds to minutes, or moving

the consumption of energy from peak hours, by initiating load

shifting, with a timeframe from hours to days.

Communication in the scope of power system services lies

between the physical hardware that is needed and basic

communication protocols like TCP/IP, and the business logic in

the form of control algorithms (fig. 1).

Another important part of ensuring that the control messages

are received within the given timeframe is the choice of

serialization format and library, which affects the size of the

message and the serialization time.

Even though there is no guaranty of delivery for messages

sent over the internet within a given timeframe as oppose to

dedicated lines, the probability of delivery within the given

timeframe is improved by reducing the size of the transmitted

message.

Furthermore the serialization time becomes especially

important to consider when the processing device of the DER

is a System on Chip, for instance Beagle Bone [2] or Odroid

[3], with limited processing capabilities, as this will also

improve the probability of delivery within a given timeframe,

because the sending and receiving devices will be able to

process the message quicker.

Sponsored by the PROActive INtegration of sustainable energy resources
enabling active distribution networks (PROAIN) project.

Fig. 1 – CENELEC SGAM Model [28].

mailto:bspet@elektro.dtu.dk
mailto:hwbi@elektro.dtu.dk
mailto:sy@elektro.dtu.dk
mailto:bjpo@dtu.dk

Computing Conference 2017

18-20 July 2017 | London, UK

2 | P a g e

Moreover, in the case of a System on Chip with limited

memory, the memory consumption has to be considered, to

ensure that the control system can be executed without fault.

In cases were the DER is communicating over a low

bandwidth data connection like EDGE (cell phone network) or

Power Line Communication, the size of the message after

serialization, and potentially also compression strongly affects

the probability of delivery within the timeframe.

The choice of serialization format and library is often

affected by the fact that most communication middleware uses

a certain format and library, which is more of a convenience

than a hindrance, as almost all communication middleware is

capable of transmitting binary or text serialized messages.

In the area of power system communications, the choice

made by prevalent communication standards should also be

taken into account.

These standards are IEC 61850 [4], OpenADR [5] and CIM

[6], which uses SCL (extension to XML), XML and RDF

(extension to XML) respectively.

The current state of the art is online benchmarks for

serialization formats and libraries, which does not take into

account the requirements of the Smart Grid, the use of Smart

Grid communication standards, the possibility of using

compression after serialization, and does not give

recommendations as to choosing a serialization format and

library for the use in Smart Grid communications.

The hypothesis is that there are many better alternatives to

using the XML format and the JAXB library for serialization in

the context of Smart Grids, especially for applications with low

bandwidth data connections and constrained processing &

memory devices.

The aim of the paper is to give guidance in choosing the most

appropriate serialization format and library for Smart Grid

communications depending on the context, and to compare

prominent serialization formats and libraries to the XML format

used by the prevalent communication standards.

II. METHODS

The scope of serializers for this paper has been limited to

Java serializers, because most serializers are available in Java,

and because Java can run cross platform.

The included serializers were chosen by searching online

for all java serializers, sorting out the ones, with few users,

which has not been updated for years, or are in early beta

versions (based on MvnRepository.com).

In addition, serializers that require manual serialization or

schemas that cannot be generated from source code, where

excluded, as it would require too much implementation work

for most real world cases (this primarily includes Thrift and the

Protocol Buffers library).

Of the 26 serializers picked, two of them failed to work

(YamlBeans & ProtoBuf (Jackson)).

The quantitative comparison of the serializers measures the

following:

 Serialization time.

 Deserialization time.

 Compression time.

 Decompression time.

 Memory use for serialization.

 Memory use for compression.

 Serialized message size.

 Compressed message size.

With compression being performed after serialization, and

using the GZip compression library.

Faster or more compact compression could be used, but

because GZip is the default compression used in

communication and because a comparison of compression

formats and libraries is outside the scope of the paper, GZip is

used to give an idea of the impact of using compression.

The times have been measured by first performing a warm

up that serialize, compress, decompress and deserialize all test

messages 1000 times, then measures the time it takes to

serialize 1000 times and taking the average, and then doing the

same for compression, decompression and deserialization.

The memory consumption is measured by requesting the

execution of the garbage collection and then saving the memory

consumption, after setting op the test objects, but before doing

the 1000 runs, then requesting the execution of the garbage

collector after 999 serialization runs, and saving the memory

consumption after all 1000 runs, to get the memory held by the

serializer for all runs plus the memory held during 1 run, which

gives the peak memory consumption during 1000 runs if the

garbage collection was as active as possible.

The times does not include initialization, because it only has

to be performed on startup, and therefore will not affect the

average serialization time of a message.

The test messages consists of IEC 61850 data model classes

because it gives a good idea of the messages being transmitted

for Smart Grid use cases, and because CIM does not specify

fixed classes for energy systems as it can be used in many

domains and OpenADR is a relatively new standard, and also

does not exactly specify data model classes.

The IEC 61850 data model classes used are logical node

classes, for which a unit uses one or more of them to describe

its components, for instance the battery of an EV or a time

schedule for production, used for measurement data and control

commands respectively.

A logical node consists of many fixed classes, divided into

3 levels below the logical node in the hierarchy, so they can be

relatively large.

For the tests all logical node classes specified in 61850-7-4

(2010) and 61850-7-420 (2009) are used.

The qualitative comparison includes serialization format

and library characteristics for language neutrality, the required

use of schemas or annotations and whether the serialized output

is binary or text, but does not take into account whether version

control is supported, as IEC 61850 specifies the version of all

logical node classes.

The tests were run on Windows 10 (build 14393), using

Java (Oracle 1.8.0_102 64bit), with an Intel Duel Core 2.1 GHz

processor (i7-4600U), with 8 GB of memory.

Computing Conference 2017

18-20 July 2017 | London, UK

3 | P a g e

The results for one serializer relative to the other serializers

should be the same on any system, as long as the system does

not run out of memory.

III. RESULTS

The included serialization formats consists of java specific

binary formats (Java Serialization API (JSA) [7], Fast-

serialization (FST) [8] and Kryo [9]), human readable text

formats (XML [10] [11] [12] [13], JSON [14] [15] [16] [13]

[17], YAML [18] [19]), and language neutral binary formats

(MsgPack [20] [21], Smile [22] [13], ProtoBuf [13], BSON

[23], Hessian [24], CBOR [25], ProtoStuff [13] [26], Avro

[27]).

These formats include multiple human readable text formats

and multiple language neutral binary formats, which gives

many options for choosing alternatives to XML and even

includes two java specific binary format (Fast-serialization and

Kryo) as alternatives to the built-in Java serialization API.

They also include formats that requires the use of schemas

and/or annotations and without, many language neutral formats,

the format used by prevalent communication standards (XML),

and many popular serialization formats.

The libraries included are the ones needed for most of the

formats, as they are single format libraries, and three multi

format libraries (ProtoStuff, Jackson, XStream).

The quantitative results of the comparison are the calculated

average serialization, deserialization, compression and

decompression times (seen in fig. 2), the serialized byte size and

compressed serialized byte size (seen in fig. 3), and the memory

consumption for serialization and compression (seen in fig. 4).

The JAXB serializer performs particularly bad when the

context is not cached, which is why the performance has been

Fig. 2 – Comparison of average processing time spent per message for serialization, deserialization, compression and decompression.

10 100 1000 10000 100000

Binary (JSA)

Binary (FST)

Kryo

XML (JAXB)

XML (JAXB - Cached)

XML (Jackson)

XML (XStream)

XML (ProtoStuff)

JSON (Jackson)

JSON (XStream)

JSON (Gson)

JSON (ProtoStuff)

JSON (Genson)

YAML (SnakeYAML)

YAML (Jackson)

MsgPack

MsgPack (Jackson)

Smile (Jackson)

Smile (ProtoStuff)

ProtoBuf (ProtoStuff)

BSON (Jackson)

Hessian

CBOR (Jackson)

ProtoStuff

Avro (Jackson)

68

45

27

48157

170

77

580

72

54

3591

109

51

168

1503

438

435

107

48

42

18

97

50

73

18

179

252

33

25

48731

275

206

1016

110

101

1420

96

55

152

1471

667

244

99

53

40

16

156

181

85

17

155

261

165

131

255

245

248

243

243

227

216

218

193

239

84

196

128

109

124

213

164

155

127

113

74

43

27

93

83

79

77

73

65

62

61

55

81

30

44

35

30

31

51

40

49

35

26

Processing time measurements

Serialization time (μs)

Deserialization time (μs)

Compression time (μs)

Decompression time (μs)

Computing Conference 2017

18-20 July 2017 | London, UK

4 | P a g e

measured both with cached context and without, which is a

optimization and optimizations has not been performed for the

other libraries.

A comparison of the XML format using the default java

serializer JAXB with a cached context, and the most

competitive serializers, based on size (Avro), speed (ProtoBuf-

ProtoStuff, ProtoStuff), being human readable (Json-Jackson),

and being java specific (Fast serialization), can be seen in fig.

5.

The results of the qualitative comparison, which includes the

name, version, and library (if the library is not a single format

library), whether the format is a human readable text format,

whether the format enables the use of and/or requires a schema,

annotations or inheritance, and whether the format is language

specific or language neutral (seen in table 1).

IV. DISCUSSION

The first thing to consider when choosing a serialization

format is whether the serialized output needs to be human

readable text, and for instance with configuration files, the data

often needs to be human readable so it can be changed in a text

editor.

Fig. 3 – Comparison of serialized size and compressed serialized size.

7616

3014

2983

12790

12762

12828

12387

9241

9236

9191

5918

9241

9362

10283

2217

6547

3895

2931

2870

7857

4537

6623

2865

2446

3388

2234

2190

3321

3270

3298

3165

3027

3050

3013

2486

1975

2854

2795

2257

2312

3025

2901

2823

2296

2029

0 2000 4000 6000 8000 10000 12000 14000

Binary (JSA)

Binary (FST)

Kryo

XML (JAXB)

XML (Jackson)

XML (XStream)

XML (ProtoStuff)

JSON (Jackson)

JSON (XStream)

JSON (Gson)

JSON (ProtoStuff)

JSON (Genson)

YAML (SnakeYAML)

YAML (Jackson)

MsgPack

MsgPack (Jackson)

Smile (Jackson)

Smile (ProtoStuff)

ProtoBuf (ProtoStuff)

BSON (Jackson)

Hessian

CBOR (Jackson)

ProtoStuff

Avro (Jackson)

Message sizes

Serialized size (bytes)

Compressed serialized size (bytes)

Computing Conference 2017

18-20 July 2017 | London, UK

5 | P a g e

However, with Smart Grid communications, it mostly only

needs to be human readable for debugging, which means that

for most use cases it might as well be binary.

Another important thing to consider is whether the message

will be compressed either by the communication middleware or

before that, because depending on the chosen serialization it

might affect the size of the message and the time it takes to

serialize and deserialize, differently.

Moreover, it is important to use a communication

middleware that does not serialize the message if it has already

been serialized.

Note that even though the compressed serialized byte size is

shown in fig. 3 for the human readable text formats (except

YAML, which is problematic with compression because of the

semantic use of whitespace), it mostly does not make sense to

compress these formats, because it removes their primary

characteristic, that they are human readable.

Memory consumption is important to consider when using a

System on Chip for the Internet of Things, which in the case of

a Beagle Bone Black only has 512 MB of memory, which is

quickly exhausted by the operating system, and the control

system.

Looking at the quantitative result however, it can be seen that

the memory used by the serializers range from 1 to 22 MB, with

many using less than 5 MB. This should make it possible to

choose a serialization format and library that can run on a

System on Chip.

Even if the serialization format has already been chosen it is

important to note that the speed of the serialization library

might differ a lot, for JSON, it could be more than 40 times as

long.

Fig. 4 – Comparison of memory use.

1

3

2

18

11

15

11

7

13

13

7

4

8

22

17

11

13

10

2

2

11

4

9

1

10

1

1

1

1

4

5

6

5

2

7

2

2

5

5

2

1

1

2

2

1

1

3

0 5 10 15 20 25

Binary (JSA)

Binary (FST)

Kryo

XML (JAXB)

XML (JAXB - Cached)

XML (Jackson)

XML (XStream)

XML (ProtoStuff)

JSON (Jackson)

JSON (XStream)

JSON (Gson)

JSON (ProtoStuff)

JSON (Genson)

YAML (SnakeYAML)

YAML (Jackson)

MsgPack

MsgPack (Jackson)

Smile (Jackson)

Smile (ProtoStuff)

ProtoBuf (ProtoStuff)

BSON (Jackson)

Hessian

CBOR (Jackson)

ProtoStuff

Avro (Jackson)

Memory consumption

Serialization (bytes)

Compression (bytes)

Computing Conference 2017

18-20 July 2017 | London, UK

6 | P a g e

Name

(version)

[(library)]

Serialization format/library characteristic

Binary / Text

Schema /

Annotations /

Inheritance

Language

neutral

JSA (JDK 1.8.0_102) Binary Required

Inheritance

No

FST (2.47) Binary Optional

Annotate

No

Kryo (4.0.0) Binary Optional

Annotate

No

XML (JDK 1.8.0_102)

(JAXB)
Text Optional

Schema &

Required
Annotate

Yes

XML (2.8.1)

 (Jackson)

Text Optional

Schema &

Annotate

Yes

XML (1.4.9)

(XStream)

Text Optional

Schema &

Annotate

Yes

XML (1.4.4)

(ProtoStuff)

Text Required or

Generated

Schema

Yes

JSON (2.8.1)

(Jackson)

Text Optional

Annotate

Yes

JSON (1.4.9)

(XStream)

Text Optional

Annotate

Yes

JSON (2.7)

 (Gson)

Text Optional

Annotate
Yes

JSON (1.4.4)

(ProtoStuff)

Text Required or

Generated

Schema

Yesa

JSON (1.4)

(Genson)

Text Optional

Annotate
Yes

YAML (1.17)

(SnakeYAML)
Text Optional

Annotate
Yes

YAML (2.8.1)

(Jackson)
Text Optional

Annotate

Yes

MsgPack (0.6.12) Binary Required

Annotate

Yes

MsgPack (0.8.8)

(Jackson)
Binary Optional

Annotate

Yes

Smile (2.8.1)

(Jackson)
Binary Optional

Annotate

Yes

Smile (1.4.4)

(ProtoStuff)
Binary Required or

Generated
Schema

Yes

ProtoBuf (1.4.4)

(ProtoStuff)

Binary Required or

Generated

Schema

Yes

BSON (2.7.0)

(Jackson)
Binary Optional

Annotate

Yes

Hessian (4.0.38) Binary No Yes

CBOR (2.8.1)

(Jackson)
Binary Optional

Annotate

Yes

ProtoStuff (1.4.4) Binary Required or

Generated

Schema

Yes

Avro (2.8.1)

(Jackson)

Binary Optional

Annotate

Yes

a. The JSON like serialization format produced by protostuff is language neutral but not compatible with
other JSON serializers, because it uses property indexes instead of property names as keys

The differences between uncompressed serialized language

neutral binary message sizes are more than 3 times as big, and

the difference between speeds is more than 24 times as fast.

Between human readable serializers, the difference in speed

is more than 70 times, and the difference in size could save

more than 25 percent, which does not include the ProtoStuff

library for JSON, because the way it saves a lot of space is by

replacing property names with property indexes, which makes

it incompatible with other JSON libraries.

For java specific serializers, Kryo is an impressive

alternative to the Java Serialization API (JSA), with message

sizes that are less than half as big for uncompressed messages,

and 2.5 times as fast.

When the size of the messages are the most important thing,

primarily with low-bandwidth data connections, Message Pack

(MsgPack) & Avro produces uniquely small messages, but pays

the price by being slower than most other language neutral

binary serializers.

When it comes to speed, especially for constrained devices,

Protocol Buffers (ProtoStuff), ProtoStuff, Kryo and FST

perform particularly well and produce quite compact output.

Concerning memory, most serializers use little memory and

it should therefore not be a problem, but some of them use much

less memory than others, which in certain situations makes

them a better choice.

Compression does make the message smaller, which for

some use cases makes it worth using, but the price payed in

processing time, is not worth it, for the most efficient

serializers, in most cases.

The comparison of JAXB with the best serializers in

different areas (fig. 5) shows that in every area there is a better

choice, especially if a different format than XML is used.

When power system control messages are sent, it requires

that measurements values have been received first by the

controlling entity, which makes the message sizes used in the

tests relevant, even though they are bigger than most control

messages, they corresponds with the average size of

measurement value messages.

The use of a schema for a serialization format, only helps to

generate programming language code, which can be helpful,

but not necessary, as the code can be created from

documentation instead.

Schemas can also be generated from programming language

code, if the serialization library has that feature, which makes it

possible to move implementations of data classes from one

programming language to a schema and then to another

programming language.

A serialization format is language neutral if it is not tied to a

particular programming language and supports cross platform

applications if implementations exist in multiple languages.

The choice to use a language neutral or cross platform

serialization format depends on whether other programming

languages has to be supported for the distributed control

application, and if so, it is important to check whether a format

is language neutral and/or supports cross platform applications.

Some serialization libraries requires or allows the use of

annotations, which might add additional work, in implementing

Computing Conference 2017

18-20 July 2017 | London, UK

7 | P a g e

the data model used, which in the case of IEC 61850 includes

hundreds of classes, but it might allow certain implementations

of data model classes that might otherwise not be possible.

In the case of IEC 61850, versioning can be handled by the

application using the serialization as the version is specified by

the logical nodes, but in other cases versioning could be an

important characteristic of a serialization format and library, to

allow the data model classes to change over time, while

allowing an application to use multiple versions.

V. CONCLUSION

There are better alternatives to using XML, as JSON is also

human readable and more compact, and binary formats,

especially ProtoStuff, ProtoBuf, Kryo and FST, are faster and

much more compact.

One thing that is special about XML and format extending

XML, is the ability to specify new message parts, as part of the

message.

But because this requires the system to know them in

advance, which could have been done through documentation,

or work with previously unknown message parts at runtime, this

is only useful for rare complex cases.

When choosing a serialization format and library, it should

be considered how active the development is, how big the

community using it is, and how many resources are available,

and seeing as this changes over time, is hard to quantify, and

very subjective, this is outside the scope of the paper.

Further general information, not specific to power system,

on pros and cons specific to a particular serializer can be found

in online benchmarks.

Future work includes a comparison of compression formats

and libraries, which could make the use of compression more

useful, and a comparison of communication middleware, which

together with this paper, could give a better overview over the

possible Internet of Things Smart Grid power system services

and applications, depending on the timeframe.

REFERENCES

[1] "Scientific American," [Online].

Available: http://blogs.scientificamerican.com/plugged-in/renewable-
energy-intermittency-explained-challenges-solutions-and-

opportunities/. [Accessed 27 09 2016].

[2] "Beagle Bone Black," [Online]. Available:
http://beagleboard.org/black. [Accessed 27 09 2016].

[3] "Odroid Specs," [Online]. Available:

https://www.engadget.com/products/hard-kernel/odroid-u3/specs/.
[Accessed 27 09 2016].

[4] R. E. Mackiewicz, "Overview of IEC 61850 and Benefits," IEEE PES

Power Systems Conference and Exposition, Atlanta, GA, pp. 623-630,
2006.

[5] C. McParland, "OpenADR open source toolkit: Developing open

source software for the Smart Grid," IEEE Power and Energy Society
General Meeting, San Diego, CA, pp. 1-7, 2011.

[6] S. R. M. S. a. J. M. G. V. M. Uslar, "What is the CIM lacking?," IEEE

PES Innovative Smart Grid Technologies Conference Europe (ISGT
Europe), Gothenburg, pp. 1-8, 2010.

[7] "Java Serialization API," [Online]. Available:

http://www.oracle.com/technetwork/articles/java/javaserial-
1536170.html. [Accessed 27 09 2016].

[8] "FST," [Online]. Available: https://github.com/RuedigerMoeller/fast-

serialization. [Accessed 27 09 2016].

[9] "Kryo," [Online]. Available: https://github.com/EsotericSoftware/kryo.

[Accessed 27 09 2016].

[10] "JAXB," [Online]. Available: https://jaxb.java.net/. [Accessed 27 09

2016].

[11] "Jackson (XML)," [Online]. Available:

https://github.com/FasterXML/jackson-dataformat-xml. [Accessed 27
09 2016].

[12] "XStream," [Online]. Available: http://x-stream.github.io/. [Accessed

27 09 2016].

[13] "ProtoStuff," [Online]. Available: http://www.protostuff.io/. [Accessed

27 09 2016].

[14] "Jackson," [Online]. Available: https://github.com/FasterXML/jackson.
[Accessed 27 09 2016].

[15] "XStream (JSON)," [Online]. Available: http://x-stream.github.io/json-

tutorial.html. [Accessed 27 09 2016].

Fig. 5 – JAXB comparison of size and speed improvements.

88%

65%

92%

92%

25%

77%

28%

78%

78%

81%

52%

11%

53%

51%

58%

34%

9%

30%

31%

39%

0% 50% 100% 150% 200% 250% 300%

Kryo

JSON (Jackson)

ProtoBuf (ProtoStuff)

ProtoStuff

Avro (Jackson)

Comparison with JAXB -Cached (percentages)

Serialization time

Serialized size

Compression time

Serialized &

compressed size

Computing Conference 2017

18-20 July 2017 | London, UK

8 | P a g e

[16] "Gson," [Online]. Available: https://github.com/google/gson. [Accessed

27 09 2016].

[17] "Genson," [Online]. Available: https://github.com/owlike/genson.

[Accessed 27 09 2016].

[18] "SnakeYaml," [Online]. Available:
https://bitbucket.org/asomov/snakeyaml. [Accessed 27 09 2016].

[19] "Jackson (YAML)," [Online]. Available:

https://github.com/FasterXML/jackson-dataformat-yaml. [Accessed 27
09 2016].

[20] "MsgPack (v.6)," [Online].

Available: https://github.com/msgpack/msgpack-java/tree/v06.
[Accessed 27 09 2016].

[21] "Jackson (MsgPack)," [Online]. Available:

https://github.com/msgpack/msgpack-java. [Accessed 27 09 2016].

[22] "Jackson (Smile)," [Online]. Available:

https://github.com/FasterXML/jackson-dataformats-

binary/tree/master/smile. [Accessed 27 09 2016].

[23] "Jackson (BSON)," [Online]. Available: https://github.com/michel-

kraemer/bson4jackson. [Accessed 27 09 2016].

[24] "Hessian Serialization," [Online]. Available:

http://wiki4.caucho.com/Hessian_Serialize_Example. [Accessed 27 09
2016].

[25] "Jackson (CBOR)," [Online]. Available:

https://github.com/FasterXML/jackson-dataformats-
binary/tree/master/cbor. [Accessed 27 09 2016].

[26] "ProtoStuff Runtime," [Online]. Available:

http://www.protostuff.io/documentation/runtime-schema/. [Accessed
27 09 2016].

[27] "Jackson (Avro)," [Online]. Available:

https://github.com/FasterXML/jackson-dataformats-
binary/tree/master/avro. [Accessed 27 09 2016].

[28] S. G. C. Group, "Smart Grid Reference Architecture," Smart Grid

Coordination Group, 2012.

