Analysis of 129I and its Application as Environmental Tracer

Hou, Xiaolin; Hou, Yingkun

Published in:
Journal of Analytical Science and Technology

Link to article, DOI:
10.5355/JAST.2012.135

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Analysis of 129I and its Application as Environmental Tracer

Xiaolin Hou1,2,*, Yingkun Hou3

1Center for Nuclear Technologies, Technical University of Denmark, Risø Campus, Building 202, Roskilde DK-4000, Denmark.
2Xi’an AMS center, SKLLQG, Institute of Earth Environment, Chinese Academy of Science, Xi’an, 710075, China.
3Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom

*Corresponding author:
Xiaolin Hou, Fax:+45 4677 5347, Tel: +45 46775357, E-mail: xiho@dtu.dk

Abstract

Iodine-129, the long-lived radioisotope of iodine, occurs naturally, but anthropogenic generated 129I has dominated the environment in the past 60 years. Due to active chemical and environmental properties of iodine and the enhanced analytical capacity for 129I measurement, the application of 129I as an environmental tracer has highly increased in the past 10 years. Neutron activation analysis and accelerator mass spectrometry are the only techniques for measurement of 129I at environmental level. This article mainly compares these two analytical techniques for the determination of 129I at environmental level, and highlights the progress of these analytical methods for chemical separation and sensitive measurement of 129I. The naturally occurred 129I has been used for age dating of samples/events in a range of 2-80 Ma. For the purpose of this study, an initial value of 129I has to be measured. Some progress on the establishment of an initial 129I level in the terrestrial system are presented in this paper. A large amount of anthropogenic 129I has been released to the environment, mainly by reprocessing nuclear fuel. Anthropogenic 129I provides a good oceanographic tracer for studying the circulation and exchange of water mass. The speciation analysis of 129I can also be used to investigate the geochemical cycle of stable iodine. Some representative works on the environmental tracer application of 129I are summarized.

Key words: Grx1, Clostridium oremlandii, backbone assignment, NMR

Introduction

129I is a long-lived radioisotope of iodine with a half life of 1.57×10^7 years. It is naturally produced mainly through the reactions of cosmic rays with xenon in the upper atmosphere, the spontaneous fission of 238U and the thermal neutron-induced fission of 235U in the earth’s crust. A relative constant production rate of 129I from these processes is expected. In an equilibrium situation with a loss of the 129I due to its radioactive decay, a steady state
concentration of ^{129}I can be reached in the environment. The estimated atom ratios of $^{129}\text{I}/^{127}\text{I}$ in the marine environment are $3 \times 10^{-13} \sim 3 \times 10^{-12}$ with an even lower ratio of $10^{-15} \sim 10^{-14}$ in the lithosphere [1]. These ranges correspond to a steady state inventory of about 180 kg of ^{129}I in the hydrosphere and about 60 kg in the lithosphere (total at about 250 kg) [1]. A representative ratio of $^{129}\text{I}/^{127}\text{I}$ at 1.5×10^{-12} has been considered in marine systems based on the measurement of marine sediment samples [2,3]. Due to the low concentration of iodine in the terrestrial environment compared to the marine system, the initial ratio of $^{129}\text{I}/^{127}\text{I}$ in the terrestrial sample might not be the same as that in the marine system. However, up to now, no reliable ratio of this data has been reported.

Since 1945, a large amount of ^{129}I has been produced and released to the environment by human nuclear activities. Nuclear weapons testing have released about 57 kg of ^{129}I to the environment [4,5]. The ^{129}I injected to the atmosphere, particularly to the stratosphere, has a relatively long residence time, which implies mixing and fallout over a large area. A globally elevated ^{129}I level has been observed in the environment. In general, the $^{129}\text{I}/^{127}\text{I}$ ratio has increased to $10^{-11} \sim 10^{-10}$ in the marine environment and $10^{-11} \sim 10^{-9}$ in the terrestrial environment due to the nuclear weapons testing [4-6].

Routine operation of nuclear reactors for power production and research has produced large amounts of ^{129}I by fission of uranium. It has been estimated that about 68000 kg ^{129}I has been produced in nuclear power reactors in the years up to year 2005 [6]. However, most of the ^{129}I generated in nuclear power production has remained in the spent fuel. The fuel elements were encased in cladding that prevents the release of gaseous radioiodine to the atmosphere. However, some amount of ^{129}I has been released to the environment because of nuclear accidents and the reprocessing of spent nuclear fuel. It is estimated that 1.3-6 kg of ^{129}I was released from the Chernobyl accident [4], causing a significantly increased ^{129}I level ($^{129}\text{I}/^{127}\text{I}$ ratio of 10^{-6}) measured in environmental samples collected from the Chernobyl accident contaminated area [7,8]. The accident happened in Fukushima, Japan in March 2011 has also released ^{129}I to the environment. The short lived radioisotopes of iodine (^{131}I, ^{132}I and ^{133}I) have been measured in wide areas far away from Japan, like America and Europe [9], but the estimated amount of ^{129}I released from the Fukushima accident has not yet been reported. The two largest spent fuel reprocessing plants (SFRP) at La Hague (France) and Sellafield (UK) have discharged 4200 kg and 1400 kg of ^{129}I to the English Channel and Irish Sea, respectively, until 2008 [6]. Meanwhile these two SFRPs have also released 75 kg and 180 kg of ^{129}I to the atmosphere, respectively [6,10]. As a consequence, the ^{129}I concentration in the Irish Sea, English Channel, North Sea, and Nordic Seas has increased significantly and the $^{129}\text{I}/^{127}\text{I}$ ratio in the seawater has elevated to values of $10^{-8} \sim 10^{-9}$ [11-18]. Even high levels of ^{129}I with $^{129}\text{I}/^{127}\text{I}$ ratios to $10^{-6} \sim 10^{-4}$ has been measured in the terrestrial samples collected near the reprocessing plants at La Hague and Sellafield [19, 20]. Other spent fuel reprocessing plants have also released ^{129}I to the environment, mainly to the atmosphere, which include about 200 kg of ^{129}I from the SFRP at Marcoule (France) and 274 kg ^{129}I from the SFRP at Hanford (USA) [6,10, 21]. An elevated ^{129}I level with $^{129}\text{I}/^{127}\text{I}$ ratios of $10^{-6} \sim 10^{-4}$ has also been reported in samples collected in regions near the reprocessing plants at WAK, Germany, Hanford, USA, Tokai, Japan, and India [22-24].

The sources, inventory and environmental levels of ^{129}I are summarized in Table 1. It can be seen that most of the ^{129}I in the environment originated from the discharges of reprocessing plants, such as those at La Hague and Sellafield. However, the majority of ^{129}I produced in reactors around the world, mainly power reactors (>90%), is still stored or pending for future reprocessing. At present, the different levels of $^{129}\text{I}/^{127}\text{I}$ in the environment are envisaged as 10^{-12} for the pre-nuclear era, $10^{-11} \sim 10^{-9}$ for the baseline level from global fallout and $10^{-9} \sim 10^{-6}$ in regions affected by the releases from the nuclear facilities. The highest ratio of $^{129}\text{I}/^{127}\text{I}$ at $10^{-6} \sim 10^{-3}$ was observed in the vicinity of the reprocessing plants and nuclear accident sites.
Table 1. Sources, inventory/releases and environmental level of 129I

<table>
<thead>
<tr>
<th>Source</th>
<th>Inventory / release</th>
<th>129I/127I ratio in the environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature</td>
<td>250 kg</td>
<td>$\approx 1 \times 10^{-12}$</td>
</tr>
<tr>
<td>Nuclear weapons testing</td>
<td>57 kg</td>
<td>0^{11}-10^{-9} (in contaminated area)</td>
</tr>
<tr>
<td>Chernobyl accident</td>
<td>1.3-6 kg</td>
<td>10^{8}-10^{6} (in North Sea and Nordic Sea water)</td>
</tr>
<tr>
<td>Marine discharge from European NFRP by 2008</td>
<td>5600 kg</td>
<td>10^{-8}-10^{-6} (in rain, lake and river water in west Europe)</td>
</tr>
<tr>
<td>Atmospheric release from European SFRP by 2007</td>
<td>440 kg</td>
<td>10^{-6}-10^{-7} (in soil, grass near NFRP)</td>
</tr>
<tr>
<td>Atmospheric release from Hanford NFRP</td>
<td>275 kg</td>
<td>10^{-6}-10^{-7} (in air near NFRP)</td>
</tr>
</tbody>
</table>

Analytical methods for determination of 129I in the environment

129I, as a radioisotope of iodine, decays by beta emission to 129Xe with a maximum energy of 154 keV, accompanied with emission of 39.6 keV gamma ray (7.5% intensity) and X-rays of mainly 29.5 keV (20.4%) and 29.8 keV (37.7%). Therefore, 129I can be measured by gamma and X-ray spectrometry, as well as by beta counting mainly using liquid scintillation counting due to its low energy of beta particles[6]. As a result of the low energies and intensities of the gamma and X-rays of 129I, the γ- and X-ray spectrometry is insensitive compared to LSC. The very long half-life of 129I, and therefore extremely low specific activity (6.5×10^6 Bq/g), make radiometric methods insensitive and only suitable for samples in which the radioactivity of the radionuclides is fairly high (Table 2). Such samples are normally found in nuclear waste or samples heavily contaminated by human nuclear activities. 129I has also been measured by inductively coupled plasma mass spectrometry (ICP-MS), but its detection limit for 129I is more or less the same as radiometric methods due to less ionization efficiency to iodine and the serious interference of 125Xe isobars. By applying dynamic reaction cells and introducing gas iodine directly to the plasma, the detection limit of ICP-MS can be improved[25], but it is still difficult to use ICP-MS to determine 129I in environmental samples in which the 129I/127I ratio is below 10^{-7}. More sensitive methods are neutron activation analysis (NAA) and accelerator mass spectrometry (AMS). Table 2 summarizes all methods used for measuring 129I. Of them, NAA and AMS are the only suitable methods for determining 129I in environmental samples[26].

Because this article aims to present the analytical methods of 129I in the environment, and the application of 129I as an environmental tracer, only NAA and AMS are presented in detail.

Table 2. Comparison of Analytical methods for measurement of 129I

<table>
<thead>
<tr>
<th>Detection method</th>
<th>Target preparation</th>
<th>Detection limit</th>
<th>129I/127I ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-(\gamma) spectrometry</td>
<td>Direct measurement</td>
<td>100-200 mBq</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>X-(\gamma) spectrometry</td>
<td>Separated iodine (AgI)</td>
<td>20 mBq</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>LSC</td>
<td>Separated iodine</td>
<td>10 mBq</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>RNAA</td>
<td>Separated MgI/I2 absorbed on charcoal</td>
<td>1 µBq</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>AMS</td>
<td>AgI</td>
<td>10^{-9} Bq</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Direct water measurement</td>
<td>40-100 µBq/ml</td>
<td>10^{-2}-10^{-6}</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Gaseous iodine</td>
<td>2.5 µBq/g</td>
<td>10^{-7}</td>
</tr>
</tbody>
</table>

In NAA, the 129I separated from sample is irradiated in a nuclear reactor to convert the long-lived 129I to short-lived 130I (12.3 h) via neutron activation reaction 129I(n, \(\gamma\))130I. By measuring the activity of 130I through its high energy gamma rays of 536 keV (99%) and 668.5 keV (96%) by gamma spectroscopy, the 129I in the sample can be quantitatively measured by comparing with a 129I standard that is irradiated and measured together with the samples. A detection limit of 10^{-13} g or
1μBq has been achieved by NAA[27]. Because of the interference of stable 127I to the determination of 129I via reaction 127I(2n, γ)129I(n,γ) 130I, the lowest 129I/127I ratio measured by NAA is 10^{-10}. Due to low concentration of 129I and high content of matrix component in environmental samples, which will induce an extremely high radioactivity after neutron irradiation, the iodine in the samples has to be separated from the sample matrix by chemical methods before neutron irradiation. In addition, the interferences from uranium and tellurium via neutron activation can be removed by chemical separation. The separated iodine needs to be prepared to solid form, such as PbI$_2$ and MgI$_2$, or adsorbed in active charcoal and sealed in a quartz ampoule for the neutron irradiation in a reactor due to high volatility and possible loss of iodine during neutron irradiation[23, 27]. A further purification of iodine in the irradiated iodine sample is often carried out to remove interferences, such as 82Br, which could not be completely eliminated during chemical separation before irradiation due to similar chemical properties of bromine to iodine, in order to reduce the Compton background in the γ spectrum, and therefore to improve the detection limit[27]. The finally separated iodine is normally prepared as PdI$_2$ precipitate for measurement of 130I by γ-spectrometry. Due to the exact same chemical properties as 129I, stable 127I is also separated and irradiated with 129I, which therefore can be determined by measuring its fast neutron activation product 126I (t$_{1/2}$=13.0 day) formed through 127I(n, 2n)129I reaction. By this way, both 129I and 127I can be determined at the same time. However, this requires that no stable iodine carrier is added during the chemical separation before neutron irradiation.

In AMS, 129I separated from samples and prepared as AgI is normally mixed with conductive material, such as silver or niobium powder, and pressed in a target holder that is put in the ion source of AMS. Negative iodine ions are sputtered from the target in the ion source using Cs$^+$ ions, guided to the injector, pre-accelerated and selected by an electrostatic analyzer, and a bouncer magnet for negative 129I and 127I ions. The preliminarily selected negative ion beams of 129I and 127I are directed to the tandemtron accelerator for accelerating. At the terminal of the accelerator, several electrons are stripped off from the accelerated iodine anions. Iodine negative ions are converted to multiple charged positive ions, for example, I$^-$, I$^{2+}$, I$^{3+}$, I$^{4+}$, and I$^{7+}$, which are then accelerated again. After passing through a magnetic analyzer, a specifically charged iodine ion, normally I$^{3+}$ or I$^{4+}$, is isolated. The stable isotope 127I is measured by a Faraday cup immediately after the magnetic analyzer. 129I ions from the magnetic analyzer is further separated by an electrostatic analyzer and a magnetic analyzer, and is finally measured by a gas ionization detector or a time of the flight detector[28]. A 129I/127I ratio is normally reported instead of the 129I signal in order to overcome the variation of ionization efficiency and intensity of the iodine ion beam. If the amount of 127I in the sample and/or 127I carrier added to the sample is known, the amount of 129I in the sample can be calculated by multiplying the measured 129I/127I value with the total amount of 127I in the sample. The calibration of the AMS instrument by analyzing the standard with a known 129I/127I ratio has to be carried out with samples for each batch of samples. The reported detection limit of AMS is 10^{5} atoms for 129I (nBq), and 10^{-14} for the 129I/127I ratio[28-30]. This makes AMS the only method allowing the analysis of pre-nuclear era samples with a 129I/127I ratio lower than 10^{-10}, even for values as low as 10^{-14}. Normally, a few milligrams of iodine as AgI needs to be prepared for AMS measurement, which is carried out by adding stable iodine (127I) carrier to the samples of low iodine concentration, or directly separating the iodine from high iodine concentration samples, such as seaweed, brine and thyroid[2, 3, 29]. A carrier free method has been recently reported for AMS determination of 129I in low iodine concentration samples, which was implemented by preparing the separated iodine as a co-precipitate of AgI-AgCl. In this case, micrograms of iodine can be analysed for 129I using AMS[28].

For all measurement techniques, 129I has to be separated from the sample matrix before measurement, especially for low level environmental
samples. The iodine separation methods for all measurement techniques are more or less the same, the differences arise only from the final form of the separated sample. For γ- and X-ray spectrometry, the separated iodine is normally prepared as small size solid, such as AgI precipitate, although liquid form in small volume can also be used. For LSC measurement, an aqueous sample needs to be prepared so it can be mixed with a liquid scintillation cocktail for measurement. NAA requests to prepare the separated iodine as solid MgI$_2$ source or be adsorbed in active charcoal, while the AgI precipitate mixed with silver or niobium powder is normally used for AMS measurement.

Typically, iodine in water sample is separated by solvent extraction using CCl$_4$ or CHCl$_3$. In this case, all iodine in the sample is first converted to I$^-$ or IO$_3^-$, then converted to I$_2$ to be extracted to organic phase. I$_2$ in the organic phase is then back extracted to aqueous phase by reducing I$_2$ to I$^-$. 2-3 extraction and back extraction cycles are normally carried out to purify iodine from interferences. An 125I tracer or stable iodine (127I) is often used to monitor the chemical yield of iodine during separation. For a large volume of water samples, including seawater, urine and milk (2-50 litres), iodine needs to be preconcentrated first. This is often carried out by ion exchange after converting all iodine species to iodide, which has a strong affinity to anion exchange resin. The adsorbed iodide is then eluted from the column using a small volume of high concentration of nitrate or NaClO solution for further separation using solvent extraction[31-35]. It should be mentioned that organic iodine in the liquid samples has to be decomposed before extraction because only inorganic iodine can be separated using solvent extraction[33, 36]. For solid samples, such as soil, sediment, vegetations, tissues, and filters, iodine is often separated by combustion. Iodine, as I$_2$, released from the sample at a high temperature (>800 °C) is trapped in a NaOH solution or onto an activated carbon column cooled with liquid nitrogen. The 129I on active charcoal can then be measured using gamma and X-ray spectrometry or used for NAA. Iodine trapped in a NaOH solution is further separated by solvent extraction[23, 27, 37, 38]. Furthermore, alkali fusion has also been used to separate iodine from solid samples. In this case, NaOH or Na$_2$CO$_3$ is added and the mixture is fused at 500-650°C for 3-4 hours. The fused sample is leached with hot water, and iodine in the leachate is separated by solvent extraction[27, 35, 39]. Acid digestion technique has also been used to decompose solid samples for separating iodine[3]. Based on the volatility of molecular iodine, iodine can be removed from the digested solution by oxidizing and bubbling. Then, the released I$_2$ is trapped in an alkaline solution. However, this procedure normally takes a long time to ensure all organic matters are decomposed. To improve the analytical efficiency of the acid digestion method, microwave assisted acid digestion has been applied to separate iodine from vegetation samples[40]. However, this method is only suitable for treating small samples (>1 g), and the loss of iodine and cross contamination might be a potential problem due to the high volatility and adsorption of molecular iodine on the walls of Teflon containers used for digestion.

Iodine Iodine exists in different species in environmental samples. In water samples it mainly occurs as I$^-$, IO$_3^-$ and organic bound iodine. Chemical speciation analysis of 129I can significantly extend fields of its tracer application. Based on the different affinity of iodine species to anion exchange resin, ion exchange chromatography has been applied for separation of different species of iodine in water samples[13,14]. Fig. 1 shows a schematic procedure for chemical speciation analysis of 129I and 127I in water samples. The speciation analysis of 129I in soil and sediment is often implemented by sequential extraction method, iodine associated to different components of the sample is leached with different reagents, the leached iodine is then separated using the method as for liquid samples[7, 41, 42]. The study of 129I in air mainly focus on aerosol associated iodine, while some speciation
analysis of 129I has also been carried out by collecting inorganic and organic gas iodine as well as particle iodine using different filters. In this case, a sequential filtration is normally used. The air first pass through a filter to collect particles associated with iodine. Then a filter paper impregnated with NaOH to trap inorganic gaseous iodine such as I$_2$, HI and HIO. Finally organic gaseous iodine is trapped using an active charcoal cartridge impregnated with amine reagent. The different fractions of iodine collected on the solid materials are further separated using combustion or alkali fusion followed by solvent extraction or precipitation for 129I measurement[18, 43-45]. A comprehensive review on speciation analysis of 129I in the environment has been reported by Hou et al[6].

Fig. 1. Schematic procedure for chemical speciation analysis of 129I and 127I in water samples (adopted from Hou et al[6].)
Environmental and geological tracer application

Due to the low sensitivity of radiometric method for 129I, the researches on 129I in the early years mainly focused on the investigation of 129I in the nuclear waste and highly contaminated environmental samples. With the application of NAA since 1960’s, determination of 129I in the present environmental level became possible, the researches on the radioecology of 129I including the migration and transfer of 129I in the ecosystem have been carried out in past 40 years. With the increased number of AMS facilities installed in the past 20 years, the determination of low level 129I in environmental samples has become relatively easy, and the determination of cosmogenic 129I becomes possible. Since 1990’s, researches on tracer application of 129I in environmental and geological sciences have being significantly increased, some representative application fields are presented below, mainly focusing on the works completed in the author’s group.

Geological dating using naturally generated 129I

Due to the long half life and the unique characteristics of cosmogenic and fissiogenic 129I, the naturally generated 129I has been used for geological dating and source identification of carbon hydrate by analysis of pore water, brine, ground water and sedimentation[2, 46-52]. The geological dating using natural 129I is based on the principle that cosmogenic 129I produced by spallation of Xe isotopes in the atmosphere in a constant rate and fissiogenic 129I from 238U in the surface environment quickly reaches to isotopic equilibrium with stable 127I at the surface reservoir to a steady state of 129I/127I ratio (initial value). When sample containing iodine is buried in a certain geological media and isolated from the surface environment, 129I in this sample will be removed with its radioactive decay in a constant rate following its half-life. Comparing the 129I/127I ratio in the investigated samples with the initial value of 129I/127I, the formation age of the sample containing iodine can be deduced as shown in Fig. 2.

Based on the analysis of marine sediment samples, an atomic ratio of 129I/127I of 1.5×10^{-12} was suggested as pre-nuclear level of 129I (initial value) in the marine system[2,3]. Using this method, natural 129I has been successfully used for dating carbon hydrate, oil and organic matters using pore water, brine, ground water and sediment of marine origination[2, 46-52]. In these samples, iodine concentration is normally high (a few tens to hundreds μg/ml or even a few mg/g), the separation of milligram of iodine for AMS measurement can easily be implemented using some milliliter or grams of sample.

Due to the relatively low concentration of stable iodine (127I) in the terrestrial environment and insufficient exchange of iodine with marine system, the initial value of 129I/127I ratio in the terrestrial environment might be different to that in the marine system. No reliable pre-nuclear 129I/127I ratio in terrestrial environment has yet been estimated, and no dating of low iodine level terrestrial samples using 129I has been reported. This is partly attributed to the difficulties in the separation of sufficient amounts of iodine from terrestrial samples for 129I measurement using AMS. Recently, our laboratory has developed a method for separation of carrier free iodine from terrestrial samples of low iodine concentration for AMS measurement of 129I in microgram of iodine target, and successfully analyzed some soil profiles down to 70 meters from the surface[28]. With this method, it is expected to establish an initial value of 129I/127I ratio in terrestrial samples and to date terrestrial samples using 129I. Considering the half life of 15.7 Ma and uncertainty of AMS in measurement of ultra low level 129I, the reasonable age scale using 129I dating will be 2-80 Ma.

![Fig. 2. Schematic illustration of 129I geological dating principle using natural 129I.](image-url)
Recorders of 129I in loess, sediment and ice cores, coral, and tree rings

Since the formation age of loess is normally younger than 2.5 Ma, 129I could not be used for age dating of loess. However, the analysis of loess in deep layer, especially in areas with low precipitation can provide a possibility of establishing the initial value of 129I/127I in terrestrial environments, which will be valuable for the 129I dating of terrestrial samples. Depth profiles of loess collected in Luochuan in Shaanxi and Xifeng in Gansu, China, as well as some deep loess sample from Xi’an, China have been analyzed for 129I. A relative constant 129I/127I value of 1.8×10^{-11} has been observed in deep loess,[28] which is about one order of magnitude higher than the suggested initial 129I/127I value in marine system[2, 3]. A relatively high 129I/127I ratio up to 600×10^{-11} was observed in the top layer of loess from China. This is attributed to the contribution of anthropogenic 129I fallout from the weapons testing and reprocessing releases which have been spread all over the world. With the increase of depth, the 129I/127I ratio decreases exponentially in the first 50 cm, and then gradually deceases to less than 3×10^{-11} in layers deeper than 300 cm, and keep relatively constant in the deep layer. While the concentration of stable 127I in the loess profile is relatively constant at 1.5-2.5 μg/g. Fig.3 shows a 129I depth profile in a loess core from Luochun, China[53]. The rapid decrease of 129I/127I ratios in the top 50 cm soil can be explained by the strong retention of iodine in the loess, and the very slow migration of iodine in the loess core.

![Fig. 3. Distribution of 129I in the depth profile of loess from Xifeng, China. (adopted from Luo [53])](image)

The sea and lake sediments are formed by deposition of suspended particles in the water body. Analysis of the sediment core can be used to retrieve deposits/events in the past. The distributions of 129I in marine sediment cores collected in Kattegat [54] and in lake sediment collected from Sweden[41, 55] and UK[56] have been reported. Fig. 4 shows a 129I profile in the sediment core collected in Kattegat, North Europe[54]. A relative higher 129I/127I ratio, especially in the top layer, with a value of 10^{-8} was observed, compared to the value in the surface environmental samples such as soil and vegetation in the baseline area (10^{-10}-10^{-9}). This is attributed to the contribution of marine discharges of two European spent nuclear fuel reprocessing plants. The 129I discharged from La Hague reprocessing plant to the English Channel is transported to the North Sea, and 129I discharged from Sellafield reprocessing plant to the Irish Sea is also transported to the North Sea along the Scottish coast. The 129I is further transported northwards along European continental coast, part of them enters to Skagerrak and Kattegat. With the increased depth, 129I/127I ratios decrease to less than 10^{-9} in the layer of more than 14 cm depth. The lower 129I level in the deep layer corresponds to the gradually increased marine discharges of 129I.
from the two reprocessing plant from about 3 kg in 1952-1966 to about 55 kg in 1983. The reprocessing plants in La Hague and Sellafield started in operation from 1966 and 1952, respectively[6]. Meanwhile, this distribution also indicates that 129I is strongly fixed in the sediment, and the migration of 129I from the top layer to the deep layer is very limited. However, because significantly increased discharges of 129I from the two European reprocessing plants started from 1990’s, the 129I/127I value in this sediment core collected in 1984, is still much lower than the present level of 129I/127I in seawater in this area (10^{-6} to 10^{-7} in 2005)[14, 18, 57].

![Fig. 4. Depth profile of 129I/127I in sediment core collected from Kattegat, North Europe (57°40´35´ ´ N, 11°24´04´ ´) in 1984. (Adopted from Lopez-Gutierrez et al. [54])]

Fig. 5 shows the depth profile of 129I in two sediment cores of 30 cm collected from a lake (Loppesjön) in middle Sweden in 2004[55]. Below 18 cm depth, 129I levels are very low, while above that, an increased 129I level towards top layer up to a 129I concentration of $(1-2) \times 10^9$ atoms/g was observed. The depth profile of 137Cs and 14C in these sediment cores are also shown in Fig.5. With these dates[55], the sediment cores can be dated to about 80 years from 2004. It is therefore estimated that the 129I level in the sediment cores has increased from 1960’s, in the top 5 cm, corresponding to the date of 1990’s and 2000’s. This agrees well with the increased marine discharge of 129I from these two reprocessing plants at La Hague and Sellafield. However, the atmospheric emission of 129I from these two reprocessing plants did not change significantly in 1970-2004. The origination of 129I in this lake sediment is therefore mainly attributed to re-emission of 129I discharged from the two reprocessing plants to the seas. 129I discharged to the sea can be re-emitted to the atmosphere as gaseous forms, which is transported over a large area, mainly in Europe and deposited onto the surface by both dry and wet precipitation[58-60], finally binding to particles in the lake water which is deposited to the bottom of the lake sediment.

![Fig. 5. Depth profile of 129I, 137Cs and 14C in two lake sediment cores collected in middle Sweden (61.7°N, 16.8°E) in 2004. (Adopted from Englund et al. [55])]

Compared to the lake sediment core which reflects the variation of 129I deposition in the catchment area of the lake, 129I distribution in the ice core can directly be used for retrieving the atmospheric deposition of 129I in a specific location. Thus it is used to reconstruct the 129I releases from the nuclear facilities in the surrounding areas[10, 61]. Fig. 6 shows 129I profiles of two ice cores collected at Fiescherhorn glacier, Swiss Alps in Europe in 1988 and 2002, which cover an age range from 1950 until 2002[10,61]. Gradually increased 129I concentration in the ice core was observed from 1950 to 1988 with slightly lower values observed in middle 1960’s. From 1988, 129I concentration in the ice core slowly decreases. The gradually increased 129I concentration in the ice core from 1950 to middle
of 1960’s reflects the atmospheric nuclear weapons testing which peaked in 1962, and the continuously increased ^{129}I concentrations from 1960’s to 1988 are attributed to the gradually increased air emission of ^{129}I from European reprocessing plants from 1955 to a relatively constant value in 1988. The decreased ^{129}I concentrations in ice from 1990 are attributed to the decreased air emission of ^{129}I from reprocessing plant at Marcoule (France) from 1990 until its close and decommissioning in 1997. This reprocessing plant has a larger air emission of about 60 GBq/y in 1976-1990 compared to about 20 GBq/g from both reprocessing plants in Sellafield and La Hague at their highest air emission rates. Since the significantly increased marine discharge of ^{129}I from reprocessing plants in La Hague and Sellafield from 1990, the re-emission of ^{129}I from the seawater in the North Sea, Irish Sea and Norwegian Sea is another source of ^{129}I in the ice core, but this might be not the major source due to a relatively long distance (>600 km) from Swiss Alpines to the marine sources and high altitude of the sampling site.

Fig. 6. Depth profile of ^{129}I concentration in two ice cores drilled in 1986 and 2002 from the Fiescherhorn glacier. (Swiss Alps, 46°33´ N, 8°4´ E), (Adopted from Reithmeier et al. [10])

Tree rings are also specimen used to retrieve the ^{129}I level in the environment if the cross section migration is small [62, 63]. However, because the tree can absorb iodine from both atmosphere directly through leaves and the soil through root, a special correction might be needed to retrieve the ^{129}I level in the atmosphere using the ^{129}I concentration in the tree ring. In addition, the selection of the tree species is also critical, since the fixation of iodine in the specific year layer and cross section migration of absorbed iodine will seriously interfere with the application of ^{129}I for reconstruction of atmospheric ^{129}I level. It has been suggested that elm, oak, and locust are three optimal species for this application [62]. Fig. 7 shows ^{129}I recorders in tree rings of three species, of them locust and oak
samples were collected from West Valley, and another tree rings of elm from Rochester, the background area in USA. A high 129I/127I level was observed in tree rings of oak and locust, this corresponds to the air emission of 129I from a reprocessing plant located in West Valley (USA) [62].

![Fig. 7. Variation of 129I level in tree rings of oak, locust from West Valley and elm from Rochester (UAS). (Adopted from Rao et al[62].)](image)

Corals live in shallow waters, generally within 100 meters depth. Coral skeleton is a good specimen to provide an archive of the chemical and physical conditions present in the surface waters of the ocean that coral has grown in. Iodine as a trace element integrates in the coral skeletons with a concentration of a few μg/g, and therefore coral samples can also be used for the retrieval of 129I variation in the surface seawater. Compared to other specimen, the high time resolution due to relatively rapid growth (10 to 20 mm/year) and the absence of mixing processes commonly occurring in sediments (such as bioturbation), make the coral an ideal specimen to reconstruct the temporal variation of 129I level in the surface and subsurface water[64, 65]. Fig. 8 shows 129I distribution in two coral columns collected from the Solomon Islands (9.5° S, 162° E) in 1994 and Easter Island (27° S, 109° W) in 1996 in South Pacific Ocean[64]. Very low 129I/127I ratios of (1-3)$\times 10^{-12}$ were observed in the coral layers before 1955. This corresponds to the initial level of 129I of pre-nuclear era, and agrees with the reported initial value of 129I/127I in marine sediment[2, 3], indicating that the migration of iodine across different layers in coral skeleton is negligible. After 1955, the 129I/127I ratios in the coral columns gradually increased to 7$\times 10^{-12}$ and 2$\times 10^{-11}$ in the two locations (Solomon Islands and Easter Island), respectively. This might be contributed to the 129I fallout as well as the marine transport. The continuously increased 129I level might indicate that sources of 129I arise from both weapons testing and reprocessing releases [64].

![Fig. 8. Distribution of 129I/127I ratio in coral skeleton from the South Pacific Ocean. (Adopted from Biddulph et al[17].)](image)

Application of anthropogenic 129I as oceanographic tracer

The large amounts of marine discharges of 129I from reprocessing plants at La Hague and Sellafield (5600 kg until 2008) provide a unique point source of 129I. With the sensitive detection technique of AMS for 129I in seawater (down to 10^5 atoms/L or 10^{-16} g/L) and the high solubility and long residence time of iodine in ocean, the anthropogenic 129I can be used as an ideal tracer for water mass transport and exchange in the long term[11-18, 66-68]. Fig. 9 shows variation of 129I concentrations in the surface water from the Norwegian coast to the Arctic and in 3 depth profiles in the Arctic[15]. The profiles clearly show decreased 129I concentrations from the
south Norwegian coast, north Norwegian coast, to the Barents Sea and then the Arctic, indicating the transport of Norwegian coastal current from South to North, and entrance to the Arctic through the Barents Sea. While the 129I concentrations in the surface water in different locations in the Arctic do not vary significantly, all depth profiles of 129I in Nansen, Amundsen and Makarov basin show a similar distribution of 129I, the highest values occur in the surface water, and a sharp decline of 129I concentrations to the depth of 300-500m followed by a weaker gradient which extends to a depth of 2000m.

Fig. 9. Distribution of 129I in surface seawater from the Norwegian coast to the Arctic and in the depth profile of water column in the Arctic. (Adopted from Alfimov et al [64].)

Fig. 10 shows 129I profiles in the south Greenland Sea, the highest 129I concentrations were measured below a depth of 3000m and an increased trend of 129I concentrations was observed from top to the bottom, this indicates that the Denmark Strait overflow water (DSOW) carrying high reprocessing 129I signal moves down to the bottom when it is transported southwards[67]. By measuring the time series of seawater samples, the transit time and transfer factor of 129I can be deduced.

Seaweed, especially brown seaweed, concentrates iodine from seawater by a factor of 10^3~10^5[69]. Compared to seawater, it is easy to collect and store
and therefore suitable for investigation of temporal variation of 129I in seawater\cite{11, 17, 39, 70}. Fig. 11 shows 129I/127I ratios in a time series of seaweed (Fucus) samples collected from different locations in North Europe. A sharply increased 129I/127I ratio in seaweed from Utsira and Klint was observed from 1992, which corresponds to the increased marine discharges of 129I from reprocessing plants at La Hague and Sellafield from 1990. By comparing with the discharge data, transit time from La Hague can be estimated to be about 1.5 and 1.8 years to Utsira and Klint respectively, and the transfer factor was estimated to be 60 and 54 ng m$^{-3}$/ton yr$^{-1}$, respectively\cite{11}.

Fig. 10. Depth profiles of 129I in the Irminger Sea (station 146) and Labrador Sea (Station 17 and 23). (Adopted from Smith et al\cite{67}.)

Geochemical cycle of stable iodine

Iodine is an essential element to humans and other mammals, insufficient intake of iodine from foodstuff and drink water causes iodine deficiency disorder (IDD), which is attributed to the low concentration of iodine in soil and agricultural products. Oceans are the main pool of iodine on the Earth’s surface, it has been generally accepted that iodine in terrestrial environment, especially in soil, originates mainly from the oceans through gaseous iodine emission from the oceans, transported by clouds and aerosols and subsequent deposition. Low concentrations of iodine in soil are attributed to long
distances of the locations from marine areas, as a consequence low deposition of marine derived iodine to the soil. However, there is conflicting evidence about this issue showing less correlation between iodine deposition flux on the soil and its distance to the ocean and the relatively high emission of iodine from terrestrial plants and soil[71, 72]. For some years it has been accepted that iodine is mainly emitted to the atmosphere from the surface of the oceans as methyl iodide and other alkyl iodides of biological origin[73]. Recent experiment showed that molecular iodine (I₂) is released from macroalgae and a high concentration of I₂ was observed in coastal areas of the ocean[74]. It has also been shown that atmospheric iodine chemistry plays an important role in ozone destruction, formation of particulates, and cloud condensation nuclei formation[75]. The complicated atmospheric chemistry of iodine ultimately feeds into the general geochemical cycle of iodine through precipitation. Therefore, speciation analysis of iodine in precipitation will provide important information about the geochemical cycle of iodine and related atmospheric chemical process.

Iodine exists in the ocean waters predominantly as dissolved iodate, iodide, and a minute amount of organic iodine. Iodide is a thermodynamically unfavorable species in oxygenated water, so its formation through the reduction of iodate cannot occur spontaneously by chemical means alone. Although iodate is a thermodynamically favourable species of iodine in seawater, kinetic barrier prevents the direct oxidation of iodide to iodate. Numerous studies have been carried out to investigate the origin of iodide, the conversion of iodine between different species, and the marine geochemical cycle of iodine by determining the concentrations of various species of iodine in seawater in certain areas. However, the conversion mechanism of chemical species of iodine is still not clear, the data on the mass transfer of iodine among geochemical reservoirs are still too fragmentary to construct a reliable geochemical cycle of iodine. This is specially associated with the difficulties in distinguishing the origin and conversion of various chemical species of iodine, practically distinguishing between newly produced, and converted iodine species.

The huge amount of I² in the European seas discharged from the two European reprocessing plants in a certain chemical forms provides a unique isotopic tracer for the investigation of geochemical cycle of stable iodine in the marine and atmosphere environment. By analyzing seawater collected from different locations in the North Sea and Baltic Sea for chemical species of both I² and stable I, the author’s group has investigated the conversion of different species of inorganic iodine (Figure 11)[13, 14, 57, 76, 77].

It was found that reduction of iodate to iodide occurs during the transport of water along the European continental coast, and the reduction of iodate to iodide in the Dutch coast and Øresund between Kattegat and Baltic Sea is a fast process; No oxidation of newly produced I² to I²O₃⁻ occurs during the water exchange between the coastal area and open sea and reduction of iodate or oxidation of iodide in the open sea seems to be a slow process. By chemical speciation analysis of I² and I in time series of precipitation samples collected in Denmark, the author’s group[58] has investigated the sources of I² in the precipitation and its transformation during the transport. It was found that iodide is the major species of I², while iodate dominates the species of I in the precipitation (Fig.12); Re-emission of I² from the surface water of the English Channel, Irish Sea, North Sea, and Norwegian Sea, especially from the European continental coast areas,
are evidently the major source of 129I in the precipitation. While stable 127I in the precipitation has multiple sources, i.e. marine, as well as terrestrial emission. The dominating 129I species in the precipitation and the marine source of 129I might indicate that the re-emitted 129I is mainly in form of molecular iodine, which is mainly converted to iodide in the precipitate through a series of atmospheric process.

Fig. 12 Distribution of total 129I (a), 129I/127I atomic ratios iodide (b), 129I/129IO$_3$ (c), and 127I/127IO$_3$ molecular ratio (d) in the English Channel and the North Sea. (Adapted from Hou et al.[9].)

Fig. 13 Variations of (a) 127IO$_3^-$, and non-ionic and total 127I concentration (μg iodine L$^{-1}$), (b) 129I, 129IO$_3^-$, and total inorganic 129I concentrations in precipitation from Roskilde, Denmark in 2001-2006 (Adopted from Hou et al.[14].)
Summary and perspectives

The features of natural production by cosmic ray reaction with xenon in the atmosphere and fission of 238U on the earth as well as long half-life facilitate the application of 129I for dating geological events of 2-80 Ma. The present dating applications is mainly focused on the marine samples with high iodine concentration. With the establishment of effective technique to separate iodine from low level geological samples and high sensitive AMS measurement technique to detect 129I in microgram of carrier free iodine target in the recent years, the application of 129I dating in terrestrial environment will become more realistic. Human nuclear activities, especially reprocessing of spent nuclear fuel have released a huge amount of 129I to the environment. The anthropogenic 129I dominates in the surface environment, which provides an ideal tracer for environmental tracer researches. The 129I discharged from the European reprocessing plants to the marine system has been successfully used for investigation of water mass transport and exchange. By chemical speciation analysis of 129I in seawater and precipitation, reprocessing 129I has also been used to investigate the geochemical cycle of stable iodine. With the development of analytical techniques for speciation analysis of 129I in atmosphere, aerosol, seaweed, and sediment, the investigation of geochemical cycles and atmospheric chemistry of stable iodine, enrichment mechanism of iodine in seaweed will become possible. A few researches have been launched in the recent years to investigate the source and atmospheric chemistry of stable iodine using reprocessing 129I and chemical speciation analysis of both 129I and 127I in atmosphere, aerosol, marine water and organism. In addition, the anthropogenic 129I has also been used as a mark to retrospect the former nuclear activities and accidents. With the development of analytical techniques including the more sensitive AMS detection technique and chemical speciation analytical method, the application fields of 129I are rapidly increasing. Of them, the migration of 129I in the geological repository sites and fields of nuclear facilities is attracting more attention due to high mobility of iodine and high radiation risk of 129I; anthropogenic as well as naturally produced 129I has also shown a potentially useful application in hydrological research.

Acknowledgements

Financial supports from the Chinese Academy of Science through the “BaiRen” Project (Grant No. KZCX2-YW-BR-13) and the Knowledge Innovation Program (Grant No. KZCX2-YW-147 and KZCX2-YW-JS106) are acknowledged.

References

10. Reithmeier H.; Lazarev V.; Ruth W.; Schwikowski M.;

and source of 129I of environmental samples in Xi’an region, China. Sci. Total Environ. 2011, 409, 3780-3788.

