Measurements of Dermal Uptake of Nicotine Directly from Air and Clothing

Bekö, Gabriel; Morrison, Glenn; Weschler, Charles J.; Koch, Holger; Salthammer, Tunga; Schripp, Tobias; Toftum, Jørn; Clausen, Geo

Published in:
Abstracts of the 26th Annual meeting of the International Society of Exposure Science

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Tu-PL-I2.3

Measurements of Dermal Uptake of Nicotine Directly from Air and Clothing

Gabriel Bekö, Technical University of Denmark, Lyngby, Denmark
Glenn Morrison, Missouri University of Science and Technology, Rolla, MO, United States
Charles Weschler, Rutgers University & Technical University of Denmark, Piscataway, United States
Holger Koch, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Bochum, Germany
Tunga Salthammer, Fraunhofer WKI, Braunschweig, Germany
Tobias Schripp, Fraunhofer WKI, Braunschweig, Germany
Jørn Toftum, Technical University of Denmark, Lyngby, Denmark
Geo Clausen, Technical University of Denmark, Lyngby, Denmark

Recent studies suggest that dermal uptake of certain semivolatile organic compounds directly from air can be a significant exposure pathway. This has been experimentally confirmed for two phthalates. An experiment has been conducted to investigate if dermal uptake of nicotine directly from air or from clothing may be similarly important. Two subjects wearing only shorts and a third subject wearing clean cotton clothes were exposed to environmental tobacco smoke (ETS) for three hours in a 55m3 chamber while breathing clean air from hoods they wore. The ETS was generated by mechanically “smoking” cigarettes, with three lit at any given time. The resulting average nicotine concentration (475 µg/m3) is comparable to the highest levels reported for smoking sections of pubs. Urine samples were collected immediately before exposure. For the subjects wearing only shorts, all urine was collected for the 60 hours post-exposure. These samples were pooled for the first 12 h, 12-36 h and 36-60 h post-exposure. For the clothed subject, urine samples were collected until the next morning. After collecting a new pre-exposure urine sample, this subject entered the chamber for another three-hour exposure wearing a hood and clothes, including a shirt that has been exposed for 5 days to elevated nicotine levels (>200 µg/m3). The urine samples were analyzed for nicotine and two metabolites -- cotinine and 3OH-cotinine. Following exposure, the subjects who wore only shorts excreted a significant amount of nicotine and nicotine metabolites. Assuming that 90% of nicotine and its metabolites are excreted via urine and that nicotine, cotinine and 30H-cotinine constitute 85% of what is excreted via urine, the back-calculated minimum amount of dermally absorbed nicotine was 570 µg for the bare-skinned subjects. For the subject wearing clean clothes, it was 20 µg, and while wearing a shirt previously exposed to nicotine, it was 80 µg. Peak cotinine and 30H-cotinine concentrations in the urine of the bare-skinned subjects were an order of magnitude higher than for non-smokers who avoid ETS exposure and comparable to levels measured among non-smokers in hospitality environments before smoking bans. This study indicates that meaningful dermal uptake of nicotine can occur from exposure to environmental tobacco smoke. This is especially important for children in homes where smoking or vaping occurs. Fresh clothing can significantly limit dermal uptake, but clothing can also be a source if it was pre-exposed to cigarette smoke.