Real-Time Optimization for Economic Model Predictive Control

Sokoler, Leo Emil; Edlund, Kristian; Frison, Gianluca; Skajaa, Anders; Jørgensen, John Bagterp

Published in:
The 10th European Workshop on Advanced Control and Diagnosis (ACD 2012)

Publication date:
2012

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Real-Time Optimization for Economic Model Predictive Control

Leo Emil Sokoler ∗∗, Kristian Edlund ∗∗, Gianluca Frison ∗
Anders Skajaa ∗ John Bagterp Jørgensen ∗

∗ DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark {leso, giaf, andsk, jbj}@imm.dtu.dk
∗∗ DONG Energy, DK-2820 Gentofte, Denmark (kried@dongenergy.dk)

Abstract: In this paper, we develop an efficient homogeneous and self-dual interior-point method for the linear programs arising in economic model predictive control. To exploit structure in the optimization problems, the algorithm employs a highly specialized Riccati iteration procedure. Simulations show that in comparison to conventional interior-point methods, our solver is a) significantly faster per. iteration and b) converges in a smaller and less fluctuating number of iterations.

1. INTRODUCTION

The main computational task in economic model predictive control (MPC) is real-time minimization of an economic objective function subject to system dynamics, input limits, input-rate limits and soft output limits. To make large-scale linear programs of this type solvable in real-time, we present a variant of Mehrotra’s predictor-corrector interior-point method (IPM) (Mehrotra, 1992; Wright, 1987; Czyzyk et al., 1999) that combines a homogeneous and self-dual model (Andersen et al., 1996; Xu et al., 1996; Ye et al., 1994; Jansen et al., 1993) with a Riccati iteration procedure (Rao et al., 1998; Jørgensen et al., 2004; Wang and Boyd, 2010; Jørgensen et al., 2012). The algorithm is tested in a small conceptual example where economic MPC is applied to minimize operational costs of a power system. In addition, we compare our algorithm against state of the art general purpose solvers and a conventional structure-exploiting IPM.

1.1 Related Work

Structure-exploiting IPMs for set-point based MPC with ℓ2-penalty have been reported in (Rao et al., 1998; Jørgensen et al., 2004; Wang and Boyd, 2010; Jørgensen et al., 2012), and similar work for ℓ1-penalty in (Edlund et al., 2009; Vandenbergh et al., 2002). For general small and medium dimensional convex optimal control problems, custom code generators such as CVXGEN (Mattingley et al., 2010) facilitate MPC for systems with dynamics even in the kHz range. First order methods aimed at MPC for embedded systems have been described by (Bemporad and Patrinos, 2012; Hans-Bernd and Ebenbauer, 2012; Jones et al., 2012). Another branch of emerging algorithms for fast MPC utilizes parametric programming (Alessio and Bemporad, 2009; Kvasnica and Fikar, 2010). Traditionally, such algorithms have been limited to small systems due to an exponential growth in complexity. However, work inspired by this field such as qpOASES (Potschka et al., 2010; Ferreau et al., 2008, 2012), partial enumeration (Pannocchia et al., 2007) and the multiresolution approximation method (Summers et al., 2011) can be applied in real-time to larger systems. For parallelization of the online algorithm, iterative methods such as (Hartley et al., 2012; Kerrigan et al., 2012) as well as the alternating direction multiplier method (Markus and Findel, 2012) have been proposed.

2. PAPER ORGANIZATION

This paper is organized as follows. In Section 3, we formulate the linear program solved in economic MPC and optimality conditions are derived. Section 4 presents a Riccati iteration procedure for specializing a homogeneous and self-dual IPM to economic MPC. A case study of economic MPC and benchmarks are provided in Section 5. We give concluding remarks in section 6.

3. PROBLEM DEFINITION

The optimization problem solved in economic MPC may be stated as

\[
\min_{u, x, y, w} \phi(u, x, w) = \sum_{k=0}^{N-1} \begin{bmatrix} p_k^T u_k + q_k^T w_{k+1}
\end{bmatrix}, \tag{1a}
\]

s.t. \(x_{k+1} = Ax_k + Bu_k, \) \(y_{k+1} = Cx_{k+1}, \) \(u_k \leq u_k \leq \pi_k, \) \(\Delta u_k \leq u_k - D x_k \leq \Delta \pi_k, \) \(y_{k+1} - w_{k+1} \leq y_{k+1} + w_{k+1}, \) \(w_{k+1} \geq 0, \) \((1b) \) \((1c) \) \((1d) \) \((1e) \) \((1f) \) \((1g) \)

for \(k \in \mathcal{N} := \{0, 1, \ldots, N - 1\}. \) The problem data are the state space matrices \((A, B, C), \) the initial state \(x_0, \) the input limits \(u_k \) and \(\pi_k, \) the input-rate limits \(\Delta u_k \) and \(\Delta \pi_k, \) the output limits \(y_k \) and \(\gamma_k, \) the input prices \(p_k, \) the prices for violating the output limits \(q_k \) and the prediction horizon \(N. \) We have labelled the inputs as \(u_k \in \mathbb{R}^{n_u}, \) the states as \(x_k \in \mathbb{R}^{n_x}, \) the outputs as \(y_k \in \mathbb{R}^{n_y} \) and the soft variables as \(w_k \in \mathbb{R}^{n_w}. \) It is assumed that the state space system has been augmented such that \(Dx_k = u_{k-1}. \)
3.1 Linear Program Formulation

In a simple form, we can write (1) as
\[
\begin{align*}
\min_t & \quad g^T t, \\
\text{s.t.} & \quad Ft = b, \\
& \quad Ht \leq c.
\end{align*}
\]
E.g. for $N = 2$ the structures are
\[
t := \begin{bmatrix} u_1^T \ x_1^T \ u_1^T \ x_2^T \ w_2^T \end{bmatrix}^T,
\]
\[
g := \begin{bmatrix} p_0^T \ 0 \ q_1^T \ p_1^T \ 0 \ q_2^T \end{bmatrix}^T,
\]
and
\[
[F] := \begin{bmatrix} B & -I & 0 & 0 & 0 & 0 & -Ax_0 \\
0 & A & 0 & B & -I & 0 & 0 \\
I & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I & 0 & 0 & 0 & 0 \\
-I & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I & 0 & 0 & 0 \\
I & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -D & 0 & I & 0 & 0 & 0 \\
0 & D & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & C & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & C & -I & 0 & 0 \\
0 & 0 & 0 & 0 & C & -I & 0 \\
0 & 0 & 0 & 0 & 0 & C & -I \\
0 & 0 & 0 & 0 & 0 & 0 & -I \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix},
\]
\[
[H] := \begin{bmatrix} \Delta u_0 \Delta \tilde{u}_0 + Dx_0 \\
\Delta \tilde{u}_0 \Delta \tilde{u}_0 + Dx_0 \end{bmatrix}.
\]
The optimization program is a highly structured linear program with $n := N(n_u + n_x + n_y)$ variables, $m_E := N_m$ equality constraints and $m_I := N(4n_u + 3n_y)$ inequality constraints.

3.2 Optimality Conditions

The Lagrangian for (2) is given by
\[
L(t, p, z) := g^T t - p^T (b - Ft) - z^T (c - Ht).
\]
Hence, the first order necessary and sufficient optimality conditions may be stated as
\[
\begin{align*}
g + F^T p + H^T z &= 0, \\
b - Ft &= 0, \\
c - Ht - s &= 0, \\
(z_i, s_i) &\geq 0, \quad i = 1, 2, \ldots, m_I,
\end{align*}
\]
in which we have introduced the dual variables $p \in \mathbb{R}^{m_E}$ and $z \in \mathbb{R}^{m_I}$, and the slack variables $s := c - Ht$. Now define Z as the diagonal matrix with diagonal elements z_1, \ldots, z_{m_I} and similarly for S. Let 1_{m_I} be the vector of all ones of size m_I. We can then state the optimality conditions as
\[
V(t, p, z, s) := \begin{bmatrix} g + F^T p + H^T z \\
b - Ft \\
c - Ht - s \\
ZS1_{m_I} \end{bmatrix} = \begin{bmatrix} 0 \\
0 \\
0 \\
0 \end{bmatrix},
\]
subject to $(z, s) \geq 0$.

4. INTERIOR POINT METHODS

We now present a variant of Mehrotra’s predictor-corrector IPM (Mehrotra, 1992; Wright, 1987; Czyzyk et al., 1999) for solving (2). The algorithm loosely tracks the central path by combining an affine step and a predictor-corrector step. The central path is defined as the set of points
\[
C := \left\{ \left[\begin{array}{c} p \\ z \end{array} \right], \left[V(t, p, z, s) = \begin{bmatrix} \sigma (g + F^T p + H^T z)^0 \\
\sigma (b - Ft)^0 \\
\sigma (c - Ht^0 - z)^0 \\
\sigma \mu^0 \end{bmatrix} \right] \right\},
\]
where $\sigma \in [0, 1]$ and $\mu^0 \approx (z_0)^T s_0 / m_I$. This path connects a given initial point (t^0, p^0, z^0, s^0) where $(z^0, s^0) \geq 0$, to a solution (t^*, p^*, z^*, s^*) satisfying (4). At iteration k, the affine direction $(\sigma = 0)$ is determined by solving
\[
J_V(t^k, p^k, z^k, s^k) := \begin{bmatrix} \Delta \sigma k \\
\Delta \tilde{\sigma} k \\
\Delta z^k \\
\Delta s^k \end{bmatrix} = -V(t^k, p^k, z^k, s^k).
\]
The Jacobian of V evaluated at (t^k, p^k, z^k, s^k) is given by
\[
J_V(t^k, p^k, z^k, s^k) := \begin{bmatrix} 0 & F^T H^T & 0 \\
- F & 0 & 0 & 0 \\
-H & 0 & 0 & -I \\
0 & 0 & S^k & Z^k \end{bmatrix}.
\]
For the predictor-corrector step $(\sigma > 0)$, we solve (5) with the modified right hand side
\[
\tilde{V}(t^k, p^k, z^k, s^k) := \begin{bmatrix} (1 - \sigma^k) (g + F^T p + H^T z) \\
(1 - \sigma^k) (b - Ft) \\
(1 - \sigma^k) (c - Ht - s) \\
((z^k)^T s^k + Z^k + \Delta \tilde{\sigma}^k \Delta S^k) 1_{m_I} - \sigma^k \mu^k 1_{m_I} \end{bmatrix}.
\]
Here $\Delta \tilde{\sigma}^k$ and ΔS^k are second order correction terms defined as diagonal matrices with diagonal elements $\tilde{z}^k_1, \ldots, \tilde{z}^k_{m_I}$ and $\tilde{s}^k_1, \ldots, \tilde{s}^k_{m_I}$. To update σ^k, we use a heuristic described in (Nocedal and Wright, 1999) that compares the affine duality gap $\tilde{\mu}^k$ with the current duality gap μ^k
\[
\sigma^k := \tilde{\mu}^k / \mu^k.
\]
where $\tilde{z}^k := z^k + \tilde{\alpha}^k \Delta z^k$ and $\tilde{s}^k := s^k + \tilde{\beta}^k \Delta s^k$. The parameters $\tilde{\alpha}$ and $\tilde{\beta}$ are used to ensure that $(z^k, s^k) \geq 0$
\[
\tilde{\alpha}^k := \max\{\tilde{\alpha} \in [0, 1] | \tilde{z}^k \geq \tilde{\alpha}^k \Delta z^k \geq 0 \}
\]
\[
\tilde{\beta}^k := \max\{\tilde{\beta} \in [0, 1] | s^k + \tilde{\beta}^k \Delta s^k \geq 0 \}.
\]
By updating σ as described above, the search direction is forced towards the central path if $\tilde{\mu}^k \approx \mu^k$, meaning that only small progress towards the solution can be made in the affine direction. We have summarized the IPM outlined above in Algorithm 1. To keep the iterates away from the boundary of the feasible region, this implementation includes a damping parameter ν in the range $[0.95; 0.999]$. For stopping criteria, we use
\[
\begin{align*}
1 + ||g||_\infty &\leq \epsilon_G, \\
1 + ||c||_\infty &\leq \epsilon_I, \\
1 + ||g||_\infty &\leq \epsilon_D, \\
1 + ||g||_\infty &\leq \epsilon_G.
\end{align*}
\]
Here e_E, e_I, e_D and e_G are small user-defined tolerances representing accuracy in primal and dual feasibility, as well as accuracy in the duality gap.

Algorithm 1 Interior-point algorithm for (2)

Require:

\[
\text{DATA} \quad (g, F, b, H, c) \\
\text{INITIAL POINT} \quad (t, p, z, s) \\
\nu
\]

// initialize
\[
\mu \leftarrow z^T \! s/m_1
\]
while CONVERGED do

// affine step
\[
(\Delta t, \Delta p, \Delta s) \leftarrow -J_V(t, p, z, s)^{-1}V(t^k, p^k, z^k, s^k)
\]
// center parameter
\[
\bar{s} \leftarrow \max\{a \in [0, 1]|z + \beta \Delta s \geq 0\} \\
\beta \leftarrow \max\{b \in [0, 1]|s + b \Delta s \geq 0\} \\
\Delta s \leftarrow s + \bar{s} \Delta s \\
\Delta \bar{z} \leftarrow \Delta t / (\bar{s} \Delta s) \\
\mu \leftarrow z^T \! s/m_1
\]
// predictor-corrector step
\[
(\Delta t, \Delta p, \Delta s) \leftarrow -J_V(t, p, z, s)^{-1}V(t^k, p^k, z^k, s^k)
\]
// step update
\[
\Delta t \leftarrow \Delta t + \nu \Delta \bar{z} \\
\Delta s \leftarrow s + \nu \Delta s \\
\Delta p \leftarrow \Delta p + \nu \Delta \bar{z} \\
\mu \leftarrow z^T \! s/m_1
\]
end while
return (t, p, z, s)

4.1 Riccati Iteration Procedure

The main operations in Algorithm 1 consist of solving linear systems in the form

\[
\begin{bmatrix}
0 & F^T & H & 0 \\
-F & 0 & 0 & 0 \\
-H & 0 & 0 & -I \\
0 & 0 & 0 & Z^T \\
\end{bmatrix}
\begin{bmatrix}
\Delta t \\
\Delta p \\
\Delta s \\
\Delta \bar{z}
\end{bmatrix} =
\begin{bmatrix}
\nu_D \\
\nu_E \\
\nu_F \\
\nu_G
\end{bmatrix}.
\]

By eliminating Δs using the last row, we obtain the reduced system

\[
\begin{bmatrix}
0 & F^T & H^T \\
-F & 0 & 0 \\
-H & 0 & 0 \\
0 & 0 & Z^{-1}S
\end{bmatrix}
\begin{bmatrix}
\Delta t \\
\Delta p \\
\Delta \bar{z}
\end{bmatrix} =
\begin{bmatrix}
\nu_D \\
\nu_E \\
\nu_F
\end{bmatrix},
\]

in which $\nu_F := r_{1f} + Z^{-1} \nu_G$. We now show that this system can be solved efficiently for the optimization problem (1). The Lagrange multipliers associated with the inequality constraints (1d-1g) are labelled $\Delta \eta$, $\Delta \lambda$, $\Delta \nu$, $\Delta \omega$, $\Delta \gamma$, $\Delta \rho$ and $\Delta \xi$ where

\[
\Delta \eta := [\Delta \eta_0^T \Delta \eta_1^T \ldots \Delta \eta_{N-1}^T]^T
\]
and similarly for $\Delta \lambda$, $\Delta \nu$, $\Delta \omega$, $\Delta \gamma$, $\Delta \rho$ and $\Delta \xi$. Here $\Delta \eta$ and $\Delta \lambda$ are multipliers for the input limits (1d), $\Delta \nu$ and $\Delta \omega$ are multipliers for the input-rate limits (1e), $\Delta \gamma$ and $\Delta \rho$ are multipliers for the output limits (1f) and $\Delta \xi$ is the vector of multipliers for the non-negative constraints (1g).

Based on this notation, the optimization variables in the system (7) can be expressed as

\[
\Delta t = [\Delta u_1^T \Delta x_1^T \Delta u_1^T \ldots \Delta u_{N-1}^T]^T, \\
\Delta p = [\Delta p_0^T \Delta p_1^T \ldots \Delta p_{N-1}^T]^T, \\
\Delta z = [\Delta \eta^T \Delta \lambda^T \Delta \nu^T \Delta \omega^T \Delta \gamma^T \Delta \rho^T \Delta \xi^T]^T.
\]

Accordingly, we partition the right hand side such that

\[
\nu_D = [r_0^T r_{-1,1}^T r_{-1,0}^T \ldots r_{-1,N-2}^T r_{-1,N-1}^T]^T, \\
\nu_E = [r_0^T p_0^T p_1^T \ldots p_{N-2}^T p_{N-1}^T]^T
\]

and write the diagonal matrix $Z^{-1}S$ in terms of diagonal submatrices

\[
Z^{-1}S = \text{diag} (\Sigma_{\eta}, \Sigma_{\lambda}, \Sigma_{\nu}, \Sigma_{\omega}, \Sigma_{\gamma}, \Sigma_{\rho}, \Sigma_{\xi}).
\]

The linear system of equations (7) may now be stated in the form

\[
\Delta \eta_i + \Delta \lambda_i - \Delta \nu_i + B^T \Delta p_i = r_{u,i}, \quad i \in N, \\
\Delta \lambda_i - \Delta \omega_i + \Delta \xi_i = r_{e,i}, \quad i \in N, \\
\Delta \nu_i - \Delta \gamma_i - \Delta \rho_i = r_{p,i}, \quad i \in N, \\
\Delta \omega_i + C \Delta x_{i+1} - \Delta \xi_i = r_{v,i+1}, \quad i \in N, \\
\Delta \xi_i - D \Delta x_i + \Delta \eta_i = r_{r,i}, \quad i \in N, \\
\Delta \gamma_i - E \Delta x_i + \Delta \rho_i = r_{r,i}, \quad i \in N, \\
\Delta \rho_i + C^T (\Delta \gamma_{i+1} - \Delta \rho_{i+1}) + A^T \Delta p_i + D^T (\Delta w_i - \Delta \xi_i) = r_{r,i}, \quad i \in N,
\]

with $N := N \setminus 0$, and the special cases

\[
-\Delta u_i + \Delta \eta_i + \Delta \lambda_i = r_{u,0}, \\
\Delta u_i - \Delta \omega_i + \Delta \xi_i = 0, \\
\Delta x_i - B \Delta u_i = r_{p,0}, \\
\Delta p_{N-1} - C^T (\Delta \gamma_{N} - \Delta \rho_{N}) = r_{x,N}.
\]

By eliminating the Lagrange multipliers for the inequality constraints $\Delta \eta_i$, $\Delta \lambda_i$, $\Delta \nu_i$, $\Delta \omega_i$, $\Delta \gamma_i$, $\Delta \rho_i$ and $\Delta \xi_i$ we get the reduced set of equations

\[
B^T \Delta p_i + U_i \Delta u_i + G_i \Delta x_i = r_{u,i},\quad i \in N, \\
-\Delta \gamma_i + B^T \Delta x_i = r_{r,i}, \quad i \in N, \\
W_i + D \Delta x_i + M_i \Delta x_{i+1} = r_{r,i}, \quad i \in N, \\
-\Delta p_{i-1} + M_i \Delta u_i + X_i \Delta x_i = r_{r,i}, \quad i \in N
\]

\[
G_i T \Delta u_i + A^T \Delta p_i = r_{x,i}, \quad i \in N, \\
-\Delta p_{N-1} - M_N \Delta w_N + X_N \Delta x_N = r_{x,N}.
\]

Here we have defined

\[
\begin{align*}
U_i & := \Sigma_{\nu,i}^1 + \Sigma_{\omega,i}^1 + \Sigma_{\gamma,i}^1, \quad i \in N, \\
W_{i+1} & := \Sigma_{\rho,i+1}^1 + \Sigma_{\gamma,i+1}^1 + \Sigma_{\xi,i+1}^1, \quad i \in N, \\
X_i & := C^T (\Sigma_{\gamma,i}^1 + \Sigma_{\xi,i}^1) C + D^T (\Sigma_{\gamma,i}^1 + \Sigma_{\xi,i}^1) D, \quad i \in N, \\
X_N & := C^T (\Sigma_{\rho,N+1}^1 + \Sigma_{\xi,N+1}^1) C, \quad i \in N, \\
G_i & := -(\Sigma_{\omega,i}^1 + \Sigma_{\gamma,i}^1) C, \quad i \in N, \\
M_{i+1} & := C^T (\Sigma_{\rho,i+1}^1 + \Sigma_{\gamma,i+1}^1), \quad i \in N,
\end{align*}
\]
where a general purpose method has order of complexity Algorithm 1 becomes of order \(\mathcal{O}(N) \). With this approach the overall complexity of the algorithms, the optimality conditions are straightforward to overcome the issue is to employ the homogeneous and self-dual model described in (Andersen et al., 1996; Xu et al., 1996). Other than making it simple to find a suitable initial point, this approach facilitates easy detection of infeasibility, as well as strategies for warm starting (Skajaa et al., 2012). In the following, we show that the Riccati iteration procedure described above can be used for IPMs based on the homogeneous and self-dual model as well. For this class of algorithms, the optimality conditions are

\[
R_{u,i} := r_{u,i} + \sum_{\lambda} \lambda w_{\lambda}, i \in \mathcal{N},
\]

\[
R_{p,i} := -r_{p,i}, i \in \mathcal{N},
\]

\[
R_{w,i+1} := r_{w,i} + \sum_{\rho} r_{\rho, i+1}, i \in \mathcal{N},
\]

\[
R_{x,i+1} := x_{i+1} - M_{t+1}^T \Delta x_{i+1}, i \in \mathcal{N},
\]

where

\[
X_{i+1} := X_{i+1} - M_{t+1}^T \Delta x_{i+1}, i \in \mathcal{N}.
\]

As described in (Rao et al., 1998; Jørgensen et al., 2004; Wang and Boyd, 2010; Czyzyk et al., 1999), the equations above can be solved efficiently by a Riccati iteration procedure. With this approach the overall complexity of Algorithm 1 becomes of order \(\mathcal{O}(N(n_u^3 + n_y^3 + n_y^3)) \). Thus, the computational cost per iteration is reduced by orders of magnitude in \(N \). Furthermore, a considerable improvement for systems of growing dimension \((n_u, n_y, n_y) \) is obtained as well. Therefore, a Riccati-based IPM is expected to run significantly faster than a conventional method and scale in a favourable way for both increasing system size and particularity for an increasing prediction horizon.

4.2 Homogeneous and Self-Dual Model

A drawback related to infeasible primal-dual IPMs such as Algorithm 1, is that the number of iterations can be very sensitive to the choice of initial point (Andersen et al., 1996). For MPC applications this presents a problem since reliability of the online solver is critical. A possible way to overcome the issue is to employ the homogeneous and self-dual model described in (Andersen et al., 1996; Ye et al., 1994; Jansen et al., 1993). Other than making it simple to find a suitable initial point, this approach facilitates easy detection of infeasibility, as well as strategies for warm starting (Skajaa et al., 2012). In the following, we show that the Riccati iteration procedure described above can be used for IPMs based on the homogeneous and self-dual model as well. For this class of algorithms, the optimality conditions are

\[
V_H(t, p, z, s, \kappa, \tau) := \begin{bmatrix}
F^T p + H^T z + g^T r_D \\
-F & 0 & 0 & 0 & 0 & 0 \\
-H & 0 & Z^{-1} S & 0 & 0 & 0
\end{bmatrix}
\]

subject to \((z, s) \geq 0\) and \((\tau, \kappa) \in \mathbb{R}_+^2\). Consequently, the linear systems solved in a homogeneous and self-dual IPM corresponding to (6), can be written as

\[
\begin{bmatrix}
0 & F^T & H^T & 0 & g^T \\
-F & 0 & 0 & b^T & c^T \\
-H & 0 & -I & c & 0
\end{bmatrix}
\begin{bmatrix}
\Delta t \\
\Delta p \\
\Delta z \\
\Delta s \\
\Delta \tau \\
\Delta \kappa
\end{bmatrix}
= \begin{bmatrix}
r_D \\
r_E \\
r_t \\
r_G \\
0 \\
0
\end{bmatrix}.
\]

It can be proven that if \(V_H(t, \tau, \tau, \tau, \tau, \tau, \tau) = 0 \), \((z, s) \geq 0\) and \((\tau, \kappa) \in \mathbb{R}_+^2\), then one of the following statements is true (Andersen et al., 1996):

- **Scaled solution optimal for (2)**

 \(\tau > 0 \) and \(\kappa = 0 \) \(\Rightarrow \) \(V(t, \tau, \tau, \tau, \tau, \tau, \tau) = 0 \).

- **Solution is certificate for infeasibility of (2)**

 \(\tau = 0 \) and \(\kappa > 0 \) \(\Rightarrow \) either \(-b^T p^* - c^T s^* > 0 \) (implies primal infeasibility), or \(g^T t^* < 0 \) (implies dual infeasibility).

To solve (10) efficiently, we first decompose the system as in (Andersen et al., 2003). For this purpose it is convenient to write the equations as

\[
F^T \Delta p + H^T \Delta z + g^T \Delta \tau = r_D,
\]

\[
c^T \Delta \tau - H \Delta t + Z \Delta s = r_T,
\]

\[
g^T \Delta x + b^T \Delta p + c^T \Delta z - r_G = 0,
\]

\[
Z \Delta s + S \Delta z = r_G,
\]

\[
\kappa \Delta \tau + \tau \Delta \kappa = r_H.
\]

We now solve (11) for \(\Delta \kappa \) and (11e) for \(\Delta s \). This gives

\[
\Delta \kappa = g^T \Delta x + b^T \Delta p + c^T \Delta z - r_G,
\]

\[
\Delta s = Z^{-1}(r_G - S \Delta z),
\]

and the conditions

\[
F^T \Delta p + H^T \Delta z + g^T \Delta \tau = r_D,
\]

\[
c^T \Delta \tau - H \Delta t + Z^{-1} S \Delta s = r_T,
\]

\[
\kappa \Delta \tau + \tau g^T \Delta x + b^T \Delta p + c^T \Delta z = r_H.
\]

In which we have defined

\[
\hat{r}_I := r_I + Z^{-1} r_C, \quad \hat{r}_H := r_H + \tau r_G.
\]

From (13d) it follows that

\[
\Delta \tau = \frac{\hat{r}_H - \tau (g^T \Delta x + b^T \Delta p + c^T \Delta z)}{\kappa}.
\]

Based on (13a-13c) we can construct the linear systems

\[
\begin{bmatrix}
0 & F^T & H^T \\
-F & 0 & 0 \\
-H & 0 & Z^{-1} S
\end{bmatrix}
\begin{bmatrix}
\tau_D \\
\tau_E \\
\tau_F
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}.
\]
such that a set of auxiliary variables f and h satisfy
\[
\begin{bmatrix}
\Delta t \\
\Delta p \\
\Delta z
\end{bmatrix} =
\begin{bmatrix}
f_1 \\
f_2 \\
f_3
\end{bmatrix} +
\begin{bmatrix}
h_1 \\
h_2 \\
h_3
\end{bmatrix} \Delta \tau,
\]
which implies
\[
\begin{bmatrix}
g^T \Delta t \\
b^T \Delta p \\
c^T \Delta z
\end{bmatrix} =
\begin{bmatrix}
g^T f_1 \\
b^T f_2 \\
c^T f_3
\end{bmatrix} +
\begin{bmatrix}
g^T h_1 \\
b^T h_2 \\
c^T h_3
\end{bmatrix} \Delta \tau.
\]
Substituting into (14) yields
\[
\Delta \tau = \frac{\dot{r} - \tau (g^T f_1 + b^T f_2 + c^T f_3)}{\kappa + \tau (g^T h_1 + b^T h_2 + c^T h_3)}.
\]
Having determined f, g and $\Delta \tau$, the remaining variables can be recovered from (12) and (17). The major operations involved in solving (10) are therefore reduced to computing f and g from (15-16). This can be done efficiently by the Riccati iteration procedure described in Section 4.1. To determine both the affine step and the predictor-corrector step, 4 linear systems have to be solved in each iteration of our homogeneous and self-dual variant of Algorithm 1. In comparison, conventional IPMs only require solving 2 linear systems per iteration. Since the system matrix is constant in each iteration however, all the major computations are only involved in solving the first system. We therefore expect the additional cost per iteration in the homogeneous and self-dual algorithm to be insignificant compared to the overall reduction in the number of iterations. To detect if a solution is optimal or infeasible, we use the following measures (Andersen et al., 2003)
\[
\begin{align*}
\rho_E &= \frac{\|br - Ft\|_\infty}{\max(1, \|F\|_\infty)}, \\
\rho_I &= \frac{\|ct - H(t - s)\|_\infty}{\max(1, \|H\|_\infty)}, \\
\rho_D &= \frac{\|gt + Ftp + HTz\|_\infty}{\max(1, \|HTF\|_\infty)}, \\
\rho_G &= \frac{\|g^T t - (b^T p - c^T z)\|_\infty}{\max(1, \|g^T b^T c^T\|_\infty)}, \\
\rho_O &= \frac{\|g^T t - (b^T p - c^T z)\|_\infty}{\|\tau - (b^T p - c^T z)\|_\infty}.
\end{align*}
\]
An iterate $(t^k, p^k, z^k, s^k, t^k, \kappa^k)$ is classified as optimal if
\[
\begin{align*}
\rho_E^k &\leq \epsilon_E, & \rho_I^k &\leq \epsilon_I, & \rho_D^k &\leq \epsilon_D, & \rho_G^k &\leq \epsilon_G,
\end{align*}
\]
and infeasible if $\tau^k \leq \tau^\epsilon \max(1, \kappa^k)$ and
\[
\begin{align*}
\rho_E^k &\leq \epsilon_E, & \rho_I^k &\leq \epsilon_I, & \rho_D^k &\leq \epsilon_D, & \rho_G^k &\leq \epsilon_G.
\end{align*}
\]
Again ϵ, ϵ_E, ϵ_I, ϵ_D, ϵ_O and ϵ_G are small user-defined tolerances.

4.3 Special Operators

To avoid forming F and G explicitly, operations involving these matrices are implemented as special operations. For $N = 2$ the optimization variables may be written as
\[
t = [u_0^T \ x_1^T \ w_1^T \ u_1^T \ x_2^T \ w_2^T]^T,
\]
\[
p = [p_1^T \ p_2^T]^T,
\]
\[
z = [\eta_0^T \ \eta_1^T \ \lambda_0^T \ \lambda_1^T \ \nu_1^T \ \nu_1^T],
\]
\[
\omega_0^T \ \omega_1^T \ \gamma_1^T \ \tau_2^T \ \rho_0^T \ \rho_2^T \ \xi_1^T \ \xi_2^T]^T.
\]
In this case, the special operations are
\[
F^T p = [p_1^T B \ p_2^T A - p_1^T 0 \ p_1^T B - p_2^T 0]^T,
\]
\[
H^T z = \begin{bmatrix}
\eta_0 - \lambda_0 + v_0 - \omega_0 \\
\eta_1 - \lambda_1 + v_1 - \omega_1 \\
C^T (\gamma_1 - \rho_1) \\
\eta_1 - \lambda_1 + v_1 - \omega_1 \\
C^T (\gamma_2 - \rho_2) \\
-\gamma_2 - \rho_2 - \eta_2
\end{bmatrix},
\]
and
\[
Ht = \begin{bmatrix}
[u^T - u_0 \ u_1^T \ (w_1^T - D x_1) - u_0^T \ (Dx_1 - u_1) \\
(C x_1 - w_1) - u_0^T \ (C x_2 - w_2) - u_0^T \ (-C x_2 - w_2)^T - u_0^T \\
(u_0 - x_1)^T \ (A x_1 + Bu_1 - x_2) - u_0^T
\end{bmatrix}.
\]
Multiplications involving F and G can thus be implemented very cheaply.

5. RESULTS

In this section, economic MPC is applied to a simple power system. Moreover, the algorithm developed in this paper is compared to state of the art general purpose solvers. For this purpose, we introduce a mass-spring system which has been previously used in e.g. (Shahzad et al., 2010; Wang and Boyd, 2010) for evaluating performance of IPMs.

5.1 Case Study - Energy System

To illustrate economic MPC of energy systems, we consider a collection of power plants in the form
\[
Y_i(s) = \frac{\tau_i}{(\tau_i s + 1)^3} U_i(s), \quad i = 1, 2, \ldots, M,
\]
where $U_i(s)$ is the units of fuel supplied to power plant i, and $Y_i(s)$ is power produced by power plant i. This third order model has been validated against measurement data in (Edlund et al., 2010). The total power production is given by $Y_T(s) := \sum_{i=1}^{M} Y_i(s)$. In the following simulation, 4 units with different operational features are controlled. We have listed the controller parameters in Table 1. The objective is to keep the total power production within a certain range, while minimizing input costs. The output limits are time varying and therefore not included in the table. To formulate a controller based on (1), the system is realized in a discrete state space form. We use a sampling time of $T_s = 5$ seconds, which is adequate to capture the system dynamics. The optimal open-loop solution for a $N = 120$ time step prediction horizon is depicted in Fig. 1. As desired, the total power generation tracks a predefined interval. The cheapest plant accounts for a majority of the load, whereas more expensive and flexible units are used only whenever faster dynamics are required.
For comparison, we use the following solvers: running a 64-bit Ubuntu 12.04.1 LTS operating system. Core(TM) i5-2520M CPU @ 2.50GHz with 4 GB RAM MPC problems. The study is performed on an Intel(R) we set up and solve a number of growing economic To evaluate the performance of our numerical algorithm, 5.2 Benchmark - Mass-Spring System

To evaluate the performance of our numerical algorithm, we set up and solve a number of growing economic MPC problems. The study is performed on an Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz with 4 GB RAM running a 64-bit Ubuntu 12.04.1 LTS operating system. For comparison, we use the following solvers:

- **SeDuMi**: Software package written in MATLAB and C for solving optimization problems over symmetric cones. The default solver is an implementation of a homogeneous and self-dual IPM (Sturm, 1999).
- **LIPSOL**: IPM for large-scale linear programming available through MATLAB’s linprog interface (Zhang, 1995).
- **LPRSol**: Riccati-based MATLAB implementation of Algorithm 1 (the Riccati iteration procedure is implemented in a separate MEX-file).
- **LPRHsol**: Riccati-based MATLAB implementation of the homogeneous and self-dual variant of Algorithm 1 (the Riccati iteration procedure is implemented in a separate MEX-file).

Our parameter setting for LPRSsol and LPRHsol is listed in Table 2. The initial point is $(t^0, p^0, s^0, z^0, r^0, k^0) = (0.995, 10^{-8}, 10^{-8}, 10^{-8}, 10^{-8}, 10^{-10})$.

<table>
<thead>
<tr>
<th>Plant #1</th>
<th>Plant #2</th>
<th>Plant #3</th>
<th>Plant #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>p_k</td>
<td>1</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>q_k</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>τ_k</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δu_k</td>
<td>-7.5</td>
<td>-5</td>
<td>-2.5</td>
</tr>
<tr>
<td>$\Delta \tau_k$</td>
<td>7.5</td>
<td>5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

5.2 Benchmark - Mass-Spring System

To evaluate the performance of our numerical algorithm, we set up and solve a number of growing economic MPC problems. The study is performed on an Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz with 4 GB RAM running a 64-bit Ubuntu 12.04.1 LTS operating system. For comparison, we use the following solvers:

- **SeDuMi**: Software package written in MATLAB and C for solving optimization problems over symmetric cones. The default solver is an implementation of a homogeneous and self-dual IPM (Sturm, 1999).
- **LIPSOL**: IPM for large-scale linear programming available through MATLAB’s linprog interface (Zhang, 1995).
- **LPRSsol**: Riccati-based MATLAB implementation of Algorithm 1 (the Riccati iteration procedure is implemented in a separate MEX-file).
- **LPRHsol**: Riccati-based MATLAB implementation of the homogeneous and self-dual variant of Algorithm 1 (the Riccati iteration procedure is implemented in a separate MEX-file).

Table 1. The generators have limited input and input-rate. Fuel costs increase inversely with the time constants (flexibility is expensive).

Table 2. Algorithmic parameter settings for large-scale benchmark.

<table>
<thead>
<tr>
<th>η</th>
<th>ϵ_k</th>
<th>ϵ_t</th>
<th>ϵ_D</th>
<th>ϵ_G</th>
<th>ϵ_O</th>
<th>ϵ_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.995</td>
<td>10^{-8}</td>
<td>10^{-8}</td>
<td>10^{-8}</td>
<td>10^{-8}</td>
<td>10^{-8}</td>
<td>10^{-10}</td>
</tr>
</tbody>
</table>

Table 3. Economic MPC parameters for mass-spring system.

<table>
<thead>
<tr>
<th>$N = 12, n_a = 8$</th>
<th>$N = 12, n_m = 32$</th>
<th>$n_m = 16, n_a = 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_k</td>
<td>q_k</td>
<td>y_k</td>
</tr>
<tr>
<td>$[1]$</td>
<td>$[100]$</td>
<td>$[-1.1]$</td>
</tr>
<tr>
<td>$[1.1]$</td>
<td>$[100]$</td>
<td>$[-1.1]$</td>
</tr>
<tr>
<td>$[1]$</td>
<td>$[1]$</td>
<td>$[1]$</td>
</tr>
</tbody>
</table>

Fig. 1. Open-loop simulation of economic MPC applied to a simple power system.

Fig. 2. CPU timings for economic MPC of mass-spring system.

In this paper, we have developed a structure-exploiting IPM, which combines a homogeneous and self-dual model with a highly specialized Riccati iteration procedure. Com-
comparison to general purpose solvers, the complexity of our
algorithm is reduced by two orders of magnitude in the
prediction horizon N, and a considerable improvement for
growing system dimensions is obtained as well. Furthermore,
the algorithm facilitates warm-starting and have a less fluctuating iteration pattern compared to conventional
IPMs. Altogether, our solver is therefore well suited to
handle real-time optimization of the structured linear pro-
grams which arise in economic MPC applications.

REFERENCES

Model Predictive Control. In L. Magni, D. Raimondo,
and F. Allgöwer (eds.), Nonlinear Model Predictive
Control, volume 384 of Lecture Notes in Control and
Information Sciences, 345–369. Springer Berlin / Heidelberg.
Andersen, E.D., Gondzio, J., Meszaros, C., and Xu, X.
Large Scale Linear Programming. PAPR 96.3. Ecole des
Hautes Etudes Commerciales, Universite de Geneve.
implementing a primal-dual interior-point method for
conic quadratic optimization. Mathematical Programming,
95(2), 249–277.

Bemporad, A. and Patrinos, P. (2012). Simple and Certifi-
cable Quadratic Programming Algorithms for Embedded
Noordwijkerhout, The Netherlands.

Czyzyk, J., Mehrotra, S., Wagner, M., and Wright, S.J.
(1999). PCx: an interior-point code for linear program-
ming. Optimization Methods and Software, 11(1-4), 397–
430.

A primal-dual interior-point linear programming al-
gorithm for MPC. Decision and Control, 2009 held
jointly with the 2009 28th Chinese Control Conference.
CDC/CCC’09. Proceedings of the 48th IEEE Confer-
ence on, 351 –356.

Edlund, K., Molbak, T., and Bendtsen, J.D. (2010). Sim-
pie Models for Model-based Portfolio Load Balancing
Controller Synthesis. IFAC Workshop Series, 1.

active set strategy to overcome the limitations of explicit
MPC. International Journal of Robust and Nonlinear
Control, 18(8), 816–830.

Parallel Active-Set Strategy to Solve Sparse Parametric
Quadratic Programs arising in MPC. In Proc. IFAC Conf.
Nonlinear Model Predictive Control (NMPC’12), 74–79.
Noordwijkerhout, The Netherlands.

of Smooth Optimization Algorithms with Applications
in Control. In Proc. IFAC Conf. Nonlinear Model Pre-
dictive Control (NMPC’12), 291–298. Noordwijkerhout,
The Netherlands.

Hartley, E.N., Jerez, J.L., Suardi, A., Maciejowski, J.M.,
dictive Control of a Boeing 747 Aircraft using an FPGA.
In Proc. IFAC Conf. Nonlinear Model Predictive Control

of Linear Programming: Skew Symmetric Self-dual
Problems and the Central Path. Reports of the Faculty
of Mathematics and Informatics, Delft University of
Technology, Fac., Univ.

Jones, C.N., Domahidi, A., Morari, M., Richter, S., Ull-
Control : Real-time Computation and Certification. In
Proc. IFAC Conf. Nonlinear Model Predictive Control

Jørgensen, J.B., Frison, G., Gade-Nielsen, N.F., and
of the Extended Linear Quadratic Control Problem. In
Proc. IFAC Conf. Nonlinear Model Predictive Control
(NMPC’12), 187–193. Noordwijkerhout, The Nether-
lands.

Jørgensen, J.B., Rawlings, J.B., and Jørgensen, S.B.
(2004). Numerical Methods for Large Scale Moving
Symposium on Dynamics and Control Process Systems
(DYCOPS), volume 7.

Kerrigan, E.C., Jerez, J.L., Longo, S., and Constantinides,
G.A. (2012). Number Representation in Predictive
Control. In Proc. IFAC Conf. Nonlinear Model Predic-
tive Control (NMPC’12), 60–67. Noordwijkerhout, The
Netherlands.

Kvasnica, M. and Fikar, M. (2010). Design and im-
plementation of model predictive control using Multi-
Parametric Toolbox and YALMIP. In Computer-Aided
Control System Design (CACSD), 2010 IEEE Interna-
tional Symposium on, 999–1004.

Markus, K. and Findeisen, R. (2012). Parallel solution of
model predictive control using the alternating direction
Predictive Control (NMPC’12), 369–374. Noord-
wijkerhout, The Netherlands.

generation for receding horizon control. In Computer-
Aided Control System Design (CACSD), 2010 IEEE

Dual Interior Point Method. SIAM Journal on Opti-
mization, 2(4), 575–601.

