Probing treatment response of glutaminolytic prostate cancer cells to natural drugs with hyperpolarized [5-13C]glutamine

Jensen, Pernille Rose; Canape, Carolina; Catanzaro, Giuseppina; Karlsson, Magnus; Lerche, Mathilde Hauge

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Resveratrol and sulforaphane have been shown to act by means of the PI3K signaling pathway. Treatment response to resveratrol is shown in Fig. E and F using hyperpolarization and RP-HPLC measurements respectively.

Glutamine metabolism is decreased after drug treatment as determined by both assays. Hyperpolarized [5-13C]glutamine metabolism thus is a promising biomarker for the non-invasive detection of tumor response to treatment, as it directly monitors one of the hallmarks in cancer metabolism - glutaminolysis - in living cells.

References:
3) This work is published: Canapè et al. MRM 2015; 73:2296–2305.