

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Sep 20, 2020

Smart Grid communication middleware comparison distributed control comparison for
the internet of things

Petersen, Bo Søborg; Bindner, Henrik W.; Poulsen, Bjarne; You, Shi

Published in:
Proceedings of 6th International Conference on Smart Cities and Green ICT Systems

Link to article, DOI:
10.5220/0006303302190226

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Petersen, B. S., Bindner, H. W., Poulsen, B., & You, S. (2017). Smart Grid communication middleware
comparison distributed control comparison for the internet of things. In Proceedings of 6th International
Conference on Smart Cities and Green ICT Systems (pp. 219-226). SCITEPRESS Digital Library.
https://doi.org/10.5220/0006303302190226

https://doi.org/10.5220/0006303302190226
https://orbit.dtu.dk/en/publications/d0a8f256-34af-44bf-9d64-ff7db796a2e8
https://doi.org/10.5220/0006303302190226

Smart Grid Communication Middleware Comparison
Distributed Control Comparison for the Internet of Things

Bo Petersen1, Henrik Bindner1, Bjarne Poulsen2 and Shi You1
1DTU Electrical Engineering, Technical University of Denmark, Anker Engelunds Vej 1, 2800, Kgs. Lyngby, Denmark

2DTU Compute, Technical University of Denmark, Anker Engelunds Vej 1, 2800, Kgs. Lyngby, Denmark

{bspet, hwbi, sy}@elektro.dtu.dk, bjpo@dtu.dk

Keywords: Smart Grid, Internet of Things, Communication Middleware, RMI, XML-RPC, CORBA, ICE, Web Services,

OPC UA, XMPP, WAMP, YAMI4, ZeroMQ.

Abstract: Communication between Distributed Energy Resources (DERs) is necessary to efficiently solve the

intermittency issues caused by renewable energy, using DER power grid auxiliary services, primarily load

shifting and shedding. The middleware used for communication determines which services are possible by

their performance, which is limited by the middleware characteristics, primarily interchangeable serialization

and the Publish-Subscribe messaging pattern. The earlier paper “Smart Grid Serialization Comparison”

(Petersen et al. 2017) aids in the choice of serialization, which has a big impact on the performance of the

communication as a whole. This paper identifies the dis-/advantages of the different middleware, shows that

there are better alternatives to Web Services and XMPP, and gives guidance in choosing the most appropriate

middleware depending on the context. YAMI4 and ZeroMQ are generally the strongest candidates for Smart

Grid distributed control, but WAMP should also be considered in the future.

1 INTRODUCTION

With an increased share of Renewable Energy in the

future Smart Grid, the problems caused by

Renewable Energy producing energy intermittently

have to be solved to ensure an efficient and reliable

supply of energy.

The most efficient solution to solve these

problems is to match the energy consumption to the

production by moving the consumption and

production of energy. This is done by controlling the

DERs, requiring communication to exchange

measurements and react to control commands.

The communication middleware used is important

for the success of communication measured by the

probability of delivery within the timeframe defined

by the power grid service offered by the DERs.

Which in the case of frequency corrections and load

shedding is milliseconds to minutes, while for load

shifting it is minutes to days.

In the context of the Internet of Things, with

hardware constrained System on Chip (SoC) devices

and low bandwidth data connections for the DERs,

the use of efficient middleware is essential for

achieving a high probability of delivery within short

timeframes.

The use of certain middleware is advocated for by

the prevalent communication standards, including

IEC 61850 (Mackiewicz 2006), OpenADR

(McParland 2011) and the Common Information

Model (Uslar et al. 2010).

An important part of the communication is the

serialization used with the middleware, covered in the

previous paper “Smart Grid Serialization

Comparison” (Petersen et al. 2017).

The current state of the art is a handful of papers

(Albano et al. 2015) (Qilin and Mintian 2010)

(Dworak et al. 2011). These are limited by the

available middleware at the time, the limited number

of middleware compared, the lack of Smart Grid

characteristics considered and the lack of

recommendations for the choice of middleware.

The hypothesis of this paper is that there are better

alternatives than the middleware advocated for by the

prevalent communication standards, especially

considering constrained SoC devices and low

bandwidth data connections.

The aim of the paper is to compare the

possibilities of middleware primarily for distributed

control, to show the dis-/advantages of a broad range

of middleware, and provide guidance in choosing the

most appropriate middleware for the given use case.

2 METHODS

The comparison is done in Java, as most middleware

is available for Java.

2.1 Middleware Choices

Choosing the best composition of communication

middleware for the comparison is important to give

the best guidance in choosing the right middleware

and to show that there are better alternatives to the

middleware advocated for by the prevalent

communication standards.

Web Services (W3C 2016) and XMPP (XSF

2016) are included because of these communication

standards. Jetty (Eclipse 2016) Web Services are

used, because Jetty is one of the most prominent

embedded Java web servers, and an embedded web

server is a requirement for distributed systems.

Vysper (Apache Mina 2016) and Smack

(Realtime Ignite 2016) have been used for XMPP as

Vysper is the only embedded Java XMPP server, and

Smack is one of the most widely used Java XMPP

clients.

OPC UA is included primarily because of its

heavy use in industrial automation and because of a

number of scientific articles (Lehnhoff et al. 2011)

(Srinivasan et al. 2013) proposing its use with IEC

61850. Prosys OPC UA (Prosys 2016) is used

because it is one of the few mature Java OPC UA

SDK’s.

Oracle RMI (Oracle 2016), Apache XML-RPC

(Apache 2016) and Oracle CORBA (OMG 2016) are

included because of their heavy use in distributed

systems, along with ZeroC ICE (ZeroC 2016) which

is a mature modern middleware with promising

performance.

As oppose to the previously mentioned

middleware, which are well-established mature

technologies and have been in use for years, a number

of new modern middleware have been included.

ZeroMQ (iMatix 2016) have been included to

show the capabilities of message queue middleware

while avoiding the use of a broker (used by most other

message queue middleware), which is ill-suited for

distributed systems. JeroMQ (JeroMQ 2016) was

chosen because it is the only native Java

implementation of ZeroMQ and still has excellent

performance.

WAMP (Tavendo 2016) is included to show the

capabilities of using Web Sockets. WAMP is used for

Web Sockets because it adds an API layer for

Request-Reply and Publish-Subscribe, as oppose to

using raw binary Web Sockets. Jawampa

(Matthias247 2016) is used because it is the only

native Java implementation.

Inspirel YAMI4 (Inspirel 2016) is included

because it is a really interesting project that is built

specifically for cyber-physical systems with a strong

performance, message prioritization, and restricted

memory consumption specifically designed for

constrained SoC devices.

2.2 Performance Comparison

For the quantitative performance comparison for

Smart Grids, three messaging patterns (Request-

Reply, Push-Pull, and Publish-Subscribe) are used.

Request-Reply (figure 1) is used with older

middleware to poll for measurement data, without

knowing when new measurements are available.

Figure 1: Request-Reply messaging pattern.

Push-Pull (figure 2) is used to send control

commands to a device, preferably asynchronously,

with only an acknowledgment of receipt returned.

Figure 2: Push-Pull messaging pattern.

Publish-Subscribe (figure 3) is used to subscribe

to measurement data, with the data returned when

new data is available, which makes this pattern much

more efficient than Request-Reply.

Figure 3: Publish-Subscribe messaging pattern.

For middleware supporting Publish-Subscribe, a

combination of Publish-Subscribe and Push-Pull

should be used for measurement data retrieval and

delivery of control command, while for the other

middleware a combination of Request-Reply, and

Push-Pull, must be used instead.

Three different message sizes (1 kB, 10 kB, and

20 kB) are used for the comparison. They are chosen

to cover the range of message sizes generated by

serialization of IEC 61850 data model classes from

the previous paper “Smart Grid Serialization

Comparison” (Petersen et al. 2017), which generate

output in the range between 2 and 12 KB.

Both string and binary message types are used,

because serialization creates either string or binary

output, with some middleware handling binary

messages more efficiently and some only supporting

string messages.

The performance measurements primarily consist

of the average number of messages that can get from

one device to another during a unit of time

(throughput) and the average time it takes to get a

message from one device to another (latency).

While measuring the throughput and latency, the

package loss is measured in the form of the

percentage of messages not received, and the memory

is measured by the consumption during the whole test

run for a given middleware.

To summarize, performance is measured for each

middleware for the following:

▪ Throughput by size (1 kB, 10 kB, 20 kB),

message type (string, binary), and messaging

pattern (Request-Reply, Push-Pull, Publish-

Subscribe).

▪ Latency by size (1 kB, 10 kB, 20 kB),

message type (string, binary), and messaging

pattern (Request-Reply, Push-Pull, Publish-

Subscribe).

▪ Package loss by messaging pattern (Request-

Reply, Push-Pull, Publish-Subscribe)

▪ Memory use by server and client.

The test was performed with two Raspberry Pi 3’s

(model B), with one running the server, as a DER,

supplying measurement values, receiving control

commands, and the other running the client, as an

aggregator, getting measurement values, sending

control commands.

The devices are connected by a 1 Gbit Ethernet,

with 100 Mbit network interfaces, which ensures that

the only limiting factor for throughput is the devices.

Because of the limitation of the 100 Mbit

bandwidth, the theoretical maximum bandwidth

utilization allows for 12500 messages of 1 kB/s,

which is 12.5 MB/s.

The data loss is measured by the percentage of the

total amount of messages not delivered for the 6 tests

(String 1 kB, String 10 kB, String 20 kB, Binary 1 kB,

Binary 10 kB and Binary 20 kB) for each messaging

pattern (Request-Reply, Push-Pull, and Publish-

Subscribe).

The memory consumption is measured for each

middleware, by taking the memory used after setting

up the tests, but before initializing the middleware

and running the tests, and comparing it to the memory

consumption after all tests.

2.3 Characteristics Comparison

The qualitative characteristics comparison compares

the capabilities of the middleware and development

related characteristics that should be considered along

with the performance of the middleware.

One thing that is particularly important for certain

Smart Grid use cases is message prioritization to

ensure that control commands can get through even

with a high amount of traffic.

The messaging patterns supported by the

middleware are very important for use cases with

high network utilization and a requirement for fast

control command delivery.

Interchangeable serialization is important because

middleware that supports it generally has a higher

throughput and lower latency because serialization

that is more efficient can be used.

Middleware that can run on SoC devices and scale

to a high degree of traffic, because of their limited

consumption of memory, is essential for distributed

control systems, which use constrained SoC devices.

For the development related characteristics, the

available resources in the form of documentation, the

development effort needed, the size of the community

(mailing lists, Q & A’s, tutorials, etc.) and the license

are important to consider.

To sum up, the following characteristics are

compared:

▪ Message prioritization

▪ Messaging patterns

▪ Interchangeable serialization

▪ SoC scalability

▪ Resource quality

▪ Development effort

▪ Community size

▪ License

3 RESULTS

When interpreting the results, and deciding on the

middleware to use it is important to first consider the

characteristics of the middleware and then the

performance needed for the given context.

3.1 Performance Comparison

The average measured throughput seen in figure 4-9,

shows that binary data is more efficient for

middleware that supports it and that Publish-

Subscribe is much more efficient than Request-Reply.

Figure 10-15 shows the average latency, which is

in addition to serialization, except for XML-RPC,

XMPP, and WAMP that already serializes the

messages.

One of the most interesting performance results is

that the bandwidth utilization is quite stable between

10 kB and 20 kB message sizes for all messaging

patterns and message types, which can be seen by

comparing the throughput in MB/s between figure 5

& 6.

It should be noted that for OPC UA and XMPP

the test could only be run with 100 iterations because

of the memory consumption, which caused them to

crash with 1000 iterations.

The performance of ICE, YAMI4 and ZeroMQ is

especially impressive and for large messages, they all

reach the limits of the network bandwidth at around

12 MB/s with overhead.

It should also be noted that Request-Reply has to

transmit messages from the client to the server and

then back, which doubles the average latency for the

network, and reduces the theoretically possible

throughput compared to the other messaging patterns.

The performance also shows how the middleware

that does not support interchangeable serialization

Figure 4: Throughput (1 kB messages).

Figure 7: Throughput (Request-Reply pattern).

Figure 5: Throughput (10 kB messages).

Figure 8: Throughput (Push-Pull pattern).

Figure 6: Throughput (20 kB messages).

Figure 9: Throughput (Publish-Subscribe pattern).

(XML-RPC, XMPP, and WAMP) pays the price for

serializing the already serialized data.

Figure 16: QoS Package loss.

The data loss can be seen in figure 16. Most

middleware delivered all messages during the

performance test. The test also shows that there is no

data loss for Request-Reply and Publish-Subscribe,

only for Push-Pull, and only for XML-RPC, CORBA

and Web services, which would not be the case

without a stable high-bandwidth data connection.

The memory consumption of the middleware is

shown in figure 17, which is important to run the

middleware on hardware constrained SoC devices.

Most middleware use less than 20 MB for the

server and client, with 3 of them using less than 2 MB,

which is quite impressive. XMPP uses much more

memory than the other middleware, which is

especially problematic seeing as it could only be

tested with 100 iterations because of its memory

consumption, which is also the case for OPC UA. On

the other hand, RMI, CORBA, and YAMI4 use

almost no memory, which makes them particularly

well suited for running on SoC devices.

Figure 10: Latency (1 kB messages).

Figure 13: Latency (Request-Reply pattern).

Figure 11: Latency (10 kB messages).

Figure 14: Latency (Push-Pull pattern).

Figure 12: Latency (20 kB messages).

Figure 15: Latency (Publish-Subscribe pattern).

Figure 17: Memory use.

3.2 Characteristics Comparison

The comparison of middleware characteristics (table

1) shows what the middleware are capable of

natively.

Only YAMI4 natively support prioritization of

messages, which makes it especially suited for use

cases with a large bandwidth utilization for

measurement data exchange, and a requirement for

fast control command delivery.

Publish-Subscribe is only supported by half the

middleware, while all middleware, except RMI,

support Push-Pull asynchronously, both of which are

required to make efficient communication possible

and all support Request-Reply.

Interchangeable serialization is supported by all

middleware except XML-RPC and XMPP (which

only support XML), and WAMP (which only support

JSON and MessagePack).

Determining whether a middleware is scalable on

SoC devices, is quite subjective and for the test, SoC

scalability is based on whether they can do 1000

iterations on a Raspberry Pi 3, which OPC UA and

XMPP cannot.

The quality of the available resources (manual,

tutorials, examples), the required development effort

(based on implementation effort for the comparison),

and the size of the community (based on

StackOverflow.com and Google search) are quite

subjective and should be judges based on the given

use case.

The license of the middleware can be decisive in

the choice of middleware. Luckily, the only

middleware that is closed source and only available

with a paid license is OPC UA, while the only

middleware that requires a paid license for

commercial use are ICE and YAMI4.

4 DISCUSSION

When choosing the middleware, the first thing to

consider is the middleware characteristics, which

should be used to limit the number of middleware

candidates, and the performance comparison should

then be used to find the best candidates for the use

case.

4.1 Characteristics Comparison

The license is especially important for commercial

products, and the SoC scalability is essential for using

the middleware on SoC devices.

The development characteristics (resource

quality, development effort, and community size) is

especially important for small projects, but also for

bigger projects, because of maintainability.

Interchangeable serialization is very important to

achieve the highest throughput and lowest latency,

but require the serialization to be chosen carefully.

The Publish-Subscribe messaging pattern is

necessary for a high degree of measurement data

exchange, and for use cases where the DER getting

Table 1: Middleware characteristics.

 Message

Prioritization

Messaging

Patterns

Interchangeable

Serialization

SoC

Scalability

Resource

quality

Development

effort

Community

size

License

RMI No
Req.-Rep.

Sync. Push-Pull
Yes Yes Medium Medium High Oracle BCL

XML-RPC No
Req.-Rep.

Push-Pull
No Yes Low Very low Medium Apache v2

CORBA No
Req.-Rep.

Push-Pull
Yes Yes High Low High Oracle BCL

ICE No
Req.-Rep.

Push-Pull
Yes Yes High Low Low GPLv2

Web

Services
No

Req.-Rep.

Push-Pull
Yes Yes High Medium Very high Apache v2

OPCUA No All Yes No Low Very high Medium Commercial

XMPP No All No No Low High Very high Apache v2

WAMP No All No Yes Medium Very low Very low Apache v2

YAMI4 Yes All Yes Yes High Very low Very low GPLv3

ZeroMQ No All Yes Yes High Low High MPLv2

For easier reading: Big Advantage, Advantage, Neutral, Disadvantage, Big Disadvantage.

data does not know how often data is sampled by the

DER supplying the measurement data. Also, the

Push-Pull pattern, with asynchronous push, is

important for use cases requiring middleware

supporting low latency control command.

Prioritization is important for getting control

commands delivered within the given timeframe

when large amounts of measurements are being

exchanged.

4.2 Performance Comparison

With the comparison of binary and string message

types, the increase in throughput for the middleware

is up to 40 percent for the majority of the tests as

shown in figures 4 - 9. But the real gain from using

binary messages comes from the smaller sizes

produced by the binary serializers which are up to 5

times smaller, than the corresponding string

serializers, as shown by the earlier paper “Smart Grid

Serialization Comparison” (Petersen et al. 2017).

Because of the stable bandwidth utilization, the

gain from the messages being up to 5 times smaller

with binary serialization means that the throughput is

increased by up to 5 times. In addition to the up to 40

percent increase in throughput because of the

middleware being faster with serialization, the total

gain from using binary serialized data with an

interchangeable serialization middleware is up to 7

times higher throughput.

The gain from using modern middleware also

comes from them supporting the Publish-Subscribe

messaging pattern which results in around 2-3 times

higher throughput which is shown in figures 4 - 6 by

comparing the throughput of Publish-Subscribe for

the 5 middleware that support it to the throughput of

Request-Reply for all the middleware.

This gain in throughput for Publish-Subscribe is

in addition to the advantage of avoiding the problems

with Request-Reply polling of measurement data,

which include using the wrong polling interval, which

will either cause a loss of measurements or waste

bandwidth by getting the same measurements more

than once. Even when using the correct polling

interval, a few messages will be lost, because of the

communication request not being executed with the

exact same interval as the hardware polling.

The average latency shown in figures 10-15 show

how long it takes for a control command to get to a

DER on average, but it is only a small part of the

latency of sending a control command over the

Internet, as opposed to the comparison, which uses

Ethernet. Still the results show that asynchronous

Push-Pull improves the latency by 3-4 times, which

can clearly be seen in figure 11, where the limit of the

bandwidth is not reached and the messages are big

enough for the results to be clear.

The results also show that interchangeable

serialization, like with throughput, also improves the

latency by about 2 times for messages of half the size,

which is seen in figure 14, by comparing the 10 kB

messages to the 20 kB messages. Which means that if

the message size is reduced by 5 times, then the

latency is improved by 5 times, in addition to the

gains from the middleware having faster latency for

binary messages.

The data loss of the compared middleware is

minimal and should not affect most use cases, but in

those few affected cases, middleware with data loss,

should off course be avoided, which includes XML-

RPC, CORBA, and Web Services, as shown in figure

16. This is however only for Push-Pull when a stable

high-bandwidth data connection is used.

The memory consumption is important for use

cases using SoC devices and for scaling up to very

high throughput use cases. It should be noted that the

measured memory consumption for OPC UA and

XMPP are for 100 iterations, which means that if they

could be run with 1000 iterations they would use a lot

of memory. However, even excluding this difference,

the memory consumption differs by at least a factor

of 10, as shown in figure 17.

4.3 Guidance

When choosing whether to use middleware advocated

for by the prevalent communication standards (Web

Services and XMPP), it should be considered that

they have terrible performance, to begin with.

Especially when considering that Web Services does

not support Publish-Subscribe and XMPP does not

support interchangeable serialization, which is

extremely problematic with low bandwidth data

connections and high throughput use cases.

The fact that these standards are moving from

Web Services to XMPP, makes the choice even easier

with SoC devices because XMPP can only be used for

use cases with low traffic where the rest of the control

system uses very little memory, and then still risks

failure due to running out of memory.

YAMI4 and ZeroMQ have a strong performance

and advantages in characteristics, primarily Publish-

Subscribe that makes them strong candidates to use

for Smart Grid control system.

ZeroMQ has better performance than YAMI4 and

can be used for commercial products, while YAMI4

has lower memory consumption and QoS

prioritization, which makes YAMI4 better suited for

distributed control on SoC devices with low

bandwidth data connections, and ZeroMQ better

suited for centralized or hierarchical control on strong

hardware with high bandwidth data connections.

WAMP should also be considered because it uses

Web Sockets, which is an emerging web standard,

which is being broadly used, and even though it has

lower performance, does not support prioritization

and interchangeable serialization, it does support

MessagePack which is a quite efficient serialization

format and might support either more serialization

formats or interchangeable serialization in the future.

When it is matured and for use cases not requiring

prioritization, it could possibly be one of the best

choices.

5 CONCLUSION

The paper shows that using message based

middleware in the form of YAMI4 or ZeroMQ has

excellent performance, and provide the best

characteristics, while other papers (Albano et al.

2015) just state that message based middleware is the

obvious choice for Smart Grid communication

because of it being message based by nature.

The paper shows the results of comparing a large

carefully chosen range of middleware, including

modern middleware, considering Smart Grid

requirements, the impact of serialization and SoC

devices, for distributed control with

recommendations for the choice of middleware.

Future work could be done by combining

serialization and communication middleware to show

the impact of combinations of the two, and to run

performance tests on high and low bandwidth data

connections, using constrained and more capable

hardware.

REFERENCES

Petersen, B., Bindner, H., Poulsen, B., You, S. (2017).

Smart Grid Serialization Comparison. In SAI

Computing Conference (unpublished), London, 2017.

Mackiewicz, R. E. (2006). Overview of IEC 61850 and

Benefits. In IEEE PES Power Systems Conference and

Exposition, Atlanta, 2006. pp. 623-630.

McParland, C. (2011), OpenADR open source toolkit:

Developing open source software for the Smart Grid. In

IEEE Power and Energy Society General Meeting, San

Diego, 2011. pp. 1-7.

Uslar, M., Rohjans, S., Specht, M., Vázquez, J. M. G.

(2010). What is the CIM lacking?. IN IEEE PES

Innovative Smart Grid Technologies Conference

Europe (ISGT Europe), Gothenburg, 2010. pp. 1-8.

Albano, M., Ferreira, L. L., Pinho, L. M., Alkhawaja, A. R.

(2015). Message-oriented middleware for smart grids.

In Computer Standards & Interfaces. 2015, 38: 133-

143.

Qilin, L., Mintian, L. (2010). The state of the art in

middleware. In Information Technology and

Applications (IFITA). 2010.

Dworak, A., Sobczak, M., Ehm, F., Sliwinski, W., Charrue,

P. (2011). Middleware trends and market leaders 2011.

In Conf. Proc.. Vol. 111010. No. CERN-ATS-2011-196.

2011., 2011.

W3C, 2016, Web Services [Online]. Available:

http://www.w3.org/2002/ws/. [Accessed 25 11 2016].

XSF, 2016, XMPP [Online]. Available: https://xmpp.org/.

[Accessed 25 11 2016].

Eclipse, 2016, Jetty [Online]. Available:

http://www.eclipse.org/jetty/. [Accessed 24 11 2016].

Apache Mina, 2016, Vysper [Online]. Available:

https://mina.apache.org/vysper-project/. [Accessed 24

11 2016].

Realtime Ignite, 2016, Smack [Online]. Available:

https://www.igniterealtime.org/projects/smack/.

[Accessed 24 11 2016].

Lehnhoff, S., Mahnke, W., Rohjans, S., Uslar, M. (2011).

IEC 61850 based OPC UA Communication-The Future

of Smart Grid Automation. In 17th Power Systems

Computation Conference (PSCC 2011). 2011.

Stockholm.

Srinivasan, S., Kumar, R., Vain, J. (2013). Integration of

IEC 61850 and OPC UA for Smart Grid automation. In

2013 IEEE Innovative Smart Grid Technologies-Asia

(ISGT Asia). 2013.

Prosys, 2016, OPC UA [Online]. Available:

https://www.prosysopc.com/products/opc-ua-java-

sdk/. [Accessed 25 11 2016].

Oracle, 2016, RMI [Online]. Available:

http://www.oracle.com/technetwork/java/javase/tech/i

ndex-jsp-136424.html. [Accessed 25 11 2016].

Apache, 2016, XML-RPC [Online]. Available:

https://ws.apache.org/xmlrpc/. [Accessed 25 11 2016].

OMG, 2016, CORBA [Online]. Available:

http://www.corba.org/. [Accessed 25 11 2016].

ZeroC, 2016, ICE [Online]. Available: https://zeroc.com/.

[Accessed 25 11 2016].

iMatix, 2016, ZeroMQ [Online]. Available:

http://zeromq.org/. [Accessed 25 11 2016].

JeroMQ, 2016, JeroMQ [Online]. Available:

https://github.com/zeromq/jeromq. [Accessed 25 11

2016].

Tavendo, 2016, WAMP [Online]. Available: http://wamp-

proto.org/. [Accessed 25 11 2016].

Matthias247, 2016, Jawampa [Online]. Available:

https://github.com/Matthias247/jawampa. [Accessed

25 11 2016].

Inspirel, 2016, YAMI4 [Online]. Available:

http://www.inspirel.com/yami4/. [Accessed 25 11

2016].

