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Abstract: Communication between Distributed Energy Resources (DERs) is necessary to efficiently solve the 

intermittency issues caused by renewable energy, using DER power grid auxiliary services, primarily load 

shifting and shedding. The middleware used for communication determines which services are possible by 

their performance, which is limited by the middleware characteristics, primarily interchangeable serialization 

and the Publish-Subscribe messaging pattern. The earlier paper “Smart Grid Serialization Comparison” 

(Petersen et al. 2017) aids in the choice of serialization, which has a big impact on the performance of the 

communication as a whole. This paper identifies the dis-/advantages of the different middleware, shows that 

there are better alternatives to Web Services and XMPP, and gives guidance in choosing the most appropriate 

middleware depending on the context. YAMI4 and ZeroMQ are generally the strongest candidates for Smart 

Grid distributed control, but WAMP should also be considered in the future. 

1 INTRODUCTION 

With an increased share of Renewable Energy in the 

future Smart Grid, the problems caused by 

Renewable Energy producing energy intermittently 

have to be solved to ensure an efficient and reliable 

supply of energy. 

The most efficient solution to solve these 

problems is to match the energy consumption to the 

production by moving the consumption and 

production of energy. This is done by controlling the 

DERs, requiring communication to exchange 

measurements and react to control commands. 

The communication middleware used is important 

for the success of communication measured by the 

probability of delivery within the timeframe defined 

by the power grid service offered by the DERs. 

Which in the case of frequency corrections and load 

shedding is milliseconds to minutes, while for load 

shifting it is minutes to days.  

In the context of the Internet of Things, with 

hardware constrained System on Chip (SoC) devices 

and low bandwidth data connections for the DERs, 

the use of efficient middleware is essential for 

achieving a high probability of delivery within short 

timeframes. 

The use of certain middleware is advocated for by 

the prevalent communication standards, including 

IEC 61850 (Mackiewicz 2006), OpenADR 

(McParland 2011) and the Common Information 

Model (Uslar et al. 2010). 

An important part of the communication is the 

serialization used with the middleware, covered in the 

previous paper “Smart Grid Serialization 

Comparison” (Petersen et al. 2017). 

The current state of the art is a handful of papers 

(Albano et al. 2015) (Qilin and Mintian 2010) 

(Dworak et al. 2011). These are limited by the 

available middleware at the time, the limited number 

of middleware compared, the lack of Smart Grid 

characteristics considered and the lack of 

recommendations for the choice of middleware. 

The hypothesis of this paper is that there are better 

alternatives than the middleware advocated for by the 

prevalent communication standards, especially 

considering constrained SoC devices and low 

bandwidth data connections. 

The aim of the paper is to compare the 

possibilities of middleware primarily for distributed 

control, to show the dis-/advantages of a broad range 

of middleware, and provide guidance in choosing the 

most appropriate middleware for the given use case. 



 

2 METHODS 

The comparison is done in Java, as most middleware 

is available for Java. 

2.1 Middleware Choices 

Choosing the best composition of communication 

middleware for the comparison is important to give 

the best guidance in choosing the right middleware 

and to show that there are better alternatives to the 

middleware advocated for by the prevalent 

communication standards. 

Web Services (W3C 2016) and XMPP (XSF 

2016) are included because of these communication 

standards. Jetty (Eclipse 2016) Web Services are 

used, because Jetty is one of the most prominent 

embedded Java web servers, and an embedded web 

server is a requirement for distributed systems.  

Vysper (Apache Mina 2016) and Smack 

(Realtime Ignite 2016) have been used for XMPP as 

Vysper is the only embedded Java XMPP server, and 

Smack is one of the most widely used Java XMPP 

clients.  

OPC UA is included primarily because of its 

heavy use in industrial automation and because of a 

number of scientific articles (Lehnhoff et al. 2011) 

(Srinivasan et al. 2013) proposing its use with IEC 

61850. Prosys OPC UA (Prosys 2016) is used 

because it is one of the few mature Java OPC UA 

SDK’s. 

Oracle RMI (Oracle 2016), Apache XML-RPC 

(Apache 2016) and Oracle CORBA (OMG 2016) are 

included because of their heavy use in distributed 

systems, along with ZeroC ICE (ZeroC 2016) which 

is a mature modern middleware with promising 

performance. 

As oppose to the previously mentioned 

middleware, which are well-established mature 

technologies and have been in use for years, a number 

of new modern middleware have been included. 

ZeroMQ (iMatix 2016) have been included to 

show the capabilities of message queue middleware 

while avoiding the use of a broker (used by most other 

message queue middleware), which is ill-suited for 

distributed systems. JeroMQ (JeroMQ 2016) was 

chosen because it is the only native Java 

implementation of ZeroMQ and still has excellent 

performance. 

WAMP (Tavendo 2016) is included to show the 

capabilities of using Web Sockets. WAMP is used for 

Web Sockets because it adds an API layer for 

Request-Reply and Publish-Subscribe, as oppose to 

using raw binary Web Sockets. Jawampa 

(Matthias247 2016) is used because it is the only 

native Java implementation. 

Inspirel YAMI4 (Inspirel 2016) is included 

because it is a really interesting project that is built 

specifically for cyber-physical systems with a strong 

performance, message prioritization, and restricted 

memory consumption specifically designed for 

constrained SoC devices. 

2.2 Performance Comparison 

For the quantitative performance comparison for 

Smart Grids, three messaging patterns (Request-

Reply, Push-Pull, and Publish-Subscribe) are used.  

Request-Reply (figure 1) is used with older 

middleware to poll for measurement data, without 

knowing when new measurements are available. 

 

Figure 1: Request-Reply messaging pattern. 

Push-Pull (figure 2) is used to send control 

commands to a device, preferably asynchronously, 

with only an acknowledgment of receipt returned. 

 

Figure 2: Push-Pull messaging pattern. 

Publish-Subscribe (figure 3) is used to subscribe 

to measurement data, with the data returned when 

new data is available, which makes this pattern much 

more efficient than Request-Reply. 

 

Figure 3: Publish-Subscribe messaging pattern. 

For middleware supporting Publish-Subscribe, a 

combination of Publish-Subscribe and Push-Pull 

should be used for measurement data retrieval and 

delivery of control command, while for the other 

middleware a combination of Request-Reply, and 

Push-Pull, must be used instead. 



 

Three different message sizes (1 kB, 10 kB, and 

20 kB) are used for the comparison. They are chosen 

to cover the range of message sizes generated by 

serialization of IEC 61850 data model classes from 

the previous paper “Smart Grid Serialization 

Comparison” (Petersen et al. 2017), which generate 

output in the range between 2 and 12 KB. 

Both string and binary message types are used, 

because serialization creates either string or binary 

output, with some middleware handling binary 

messages more efficiently and some only supporting 

string messages. 

The performance measurements primarily consist 

of the average number of messages that can get from 

one device to another during a unit of time 

(throughput) and the average time it takes to get a 

message from one device to another (latency).  

While measuring the throughput and latency, the 

package loss is measured in the form of the 

percentage of messages not received, and the memory 

is measured by the consumption during the whole test 

run for a given middleware. 

To summarize, performance is measured for each 

middleware for the following: 

▪ Throughput by size (1 kB, 10 kB, 20 kB), 

message type (string, binary), and messaging 

pattern (Request-Reply, Push-Pull, Publish-

Subscribe). 

▪ Latency by size (1 kB, 10 kB, 20 kB), 

message type (string, binary), and messaging 

pattern (Request-Reply, Push-Pull, Publish-

Subscribe).  

▪ Package loss by messaging pattern (Request-

Reply, Push-Pull, Publish-Subscribe) 

▪ Memory use by server and client. 

The test was performed with two Raspberry Pi 3’s 

(model B), with one running the server, as a DER, 

supplying measurement values, receiving control 

commands, and the other running the client, as an 

aggregator, getting measurement values, sending 

control commands. 

The devices are connected by a 1 Gbit Ethernet, 

with 100 Mbit network interfaces, which ensures that 

the only limiting factor for throughput is the devices. 

Because of the limitation of the 100 Mbit 

bandwidth, the theoretical maximum bandwidth 

utilization allows for 12500 messages of 1 kB/s, 

which is 12.5 MB/s. 

The data loss is measured by the percentage of the 

total amount of messages not delivered for the 6 tests 

(String 1 kB, String 10 kB, String 20 kB, Binary 1 kB, 

Binary 10 kB and Binary 20 kB) for each messaging 

pattern (Request-Reply, Push-Pull, and Publish-

Subscribe). 

The memory consumption is measured for each 

middleware, by taking the memory used after setting 

up the tests, but before initializing the middleware 

and running the tests, and comparing it to the memory 

consumption after all tests. 

2.3 Characteristics Comparison 

The qualitative characteristics comparison compares 

the capabilities of the middleware and development 

related characteristics that should be considered along 

with the performance of the middleware. 

One thing that is particularly important for certain 

Smart Grid use cases is message prioritization to 

ensure that control commands can get through even 

with a high amount of traffic. 

The messaging patterns supported by the 

middleware are very important for use cases with 

high network utilization and a requirement for fast 

control command delivery. 

Interchangeable serialization is important because 

middleware that supports it generally has a higher 

throughput and lower latency because serialization 

that is more efficient can be used. 

Middleware that can run on SoC devices and scale 

to a high degree of traffic, because of their limited 

consumption of memory, is essential for distributed 

control systems, which use constrained SoC devices. 

For the development related characteristics, the 

available resources in the form of documentation, the 

development effort needed, the size of the community 

(mailing lists, Q & A’s, tutorials, etc.) and the license 

are important to consider. 

To sum up, the following characteristics are 

compared: 

▪ Message prioritization 

▪ Messaging patterns 

▪ Interchangeable serialization  

▪ SoC scalability 

▪ Resource quality 

▪ Development effort 

▪ Community size 

▪ License 

3 RESULTS 

When interpreting the results, and deciding on the 

middleware to use it is important to first consider the 

characteristics of the middleware and then the 

performance needed for the given context.  



 

3.1 Performance Comparison 

The average measured throughput seen in figure 4-9, 

shows that binary data is more efficient for 

middleware that supports it and that Publish-

Subscribe is much more efficient than Request-Reply. 

Figure 10-15 shows the average latency, which is 

in addition to serialization, except for XML-RPC, 

XMPP, and WAMP that already serializes the 

messages. 

One of the most interesting performance results is 

that the bandwidth utilization is quite stable between 

10 kB and 20 kB message sizes for all messaging 

patterns and message types, which can be seen by 

comparing the throughput in MB/s between figure 5 

& 6. 

It should be noted that for OPC UA and XMPP 

the test could only be run with 100 iterations because 

of the memory consumption, which caused them to 

crash with 1000 iterations. 

The performance of ICE, YAMI4 and ZeroMQ is 

especially impressive and for large messages, they all 

reach the limits of the network bandwidth at around 

12 MB/s with overhead. 

It should also be noted that Request-Reply has to 

transmit messages from the client to the server and 

then back, which doubles the average latency for the 

network, and reduces the theoretically possible 

throughput compared to the other messaging patterns. 

The performance also shows how the middleware 

that does not support interchangeable serialization 

 

Figure 4: Throughput (1 kB messages). 

 

Figure 7: Throughput (Request-Reply pattern). 

 

Figure 5: Throughput (10 kB messages). 

 

Figure 8: Throughput (Push-Pull pattern). 

 

Figure 6: Throughput (20 kB messages). 

 

Figure 9: Throughput (Publish-Subscribe pattern). 



 

(XML-RPC, XMPP, and WAMP) pays the price for 

serializing the already serialized data. 

 

Figure 16: QoS Package loss. 

The data loss can be seen in figure 16. Most 

middleware delivered all messages during the 

performance test. The test also shows that there is no 

data loss for Request-Reply and Publish-Subscribe, 

only for Push-Pull, and only for XML-RPC, CORBA 

and Web services, which would not be the case 

without a stable high-bandwidth data connection. 

The memory consumption of the middleware is 

shown in figure 17, which is important to run the 

middleware on hardware constrained SoC devices. 

Most middleware use less than 20 MB for the 

server and client, with 3 of them using less than 2 MB, 

which is quite impressive. XMPP uses much more 

memory than the other middleware, which is 

especially problematic seeing as it could only be 

tested with 100 iterations because of its memory 

consumption, which is also the case for OPC UA. On 

the other hand, RMI, CORBA, and YAMI4 use 

almost no memory, which makes them particularly 

well suited for running on SoC devices. 

 

Figure 10: Latency (1 kB messages). 

 

Figure 13: Latency (Request-Reply pattern). 

 

Figure 11: Latency (10 kB messages). 

 

Figure 14: Latency (Push-Pull pattern). 

 

Figure 12: Latency (20 kB messages). 

 

Figure 15: Latency (Publish-Subscribe pattern). 



 

 

Figure 17: Memory use. 

3.2 Characteristics Comparison 

The comparison of middleware characteristics (table 

1) shows what the middleware are capable of 

natively. 

Only YAMI4 natively support prioritization of 

messages, which makes it especially suited for use 

cases with a large bandwidth utilization for 

measurement data exchange, and a requirement for 

fast control command delivery. 

Publish-Subscribe is only supported by half the 

middleware, while all middleware, except RMI, 

support Push-Pull asynchronously, both of which are 

required to make efficient communication possible 

and all support Request-Reply. 

Interchangeable serialization is supported by all 

middleware except XML-RPC and XMPP (which 

only support XML), and WAMP (which only support 

JSON and MessagePack). 

Determining whether a middleware is scalable on 

SoC devices, is quite subjective and for the test, SoC 

scalability is based on whether they can do 1000 

iterations on a Raspberry Pi 3, which OPC UA and 

XMPP cannot. 

The quality of the available resources (manual, 

tutorials, examples), the required development effort 

(based on implementation effort for the comparison), 

and the size of the community (based on 

StackOverflow.com and Google search) are quite 

subjective and should be judges based on the given 

use case. 

The license of the middleware can be decisive in 

the choice of middleware. Luckily, the only 

middleware that is closed source and only available 

with a paid license is OPC UA, while the only 

middleware that requires a paid license for 

commercial use are ICE and YAMI4. 

4 DISCUSSION 

When choosing the middleware, the first thing to 

consider is the middleware characteristics, which 

should be used to limit the number of middleware 

candidates, and the performance comparison should 

then be used to find the best candidates for the use 

case. 

4.1 Characteristics Comparison 

The license is especially important for commercial 

products, and the SoC scalability is essential for using 

the middleware on SoC devices. 

The development characteristics (resource 

quality, development effort, and community size) is 

especially important for small projects, but also for 

bigger projects, because of maintainability. 

Interchangeable serialization is very important to 

achieve the highest throughput and lowest latency, 

but require the serialization to be chosen carefully. 

The Publish-Subscribe messaging pattern is 

necessary for a high degree of measurement data 

exchange, and for use cases where the DER getting 

Table 1: Middleware characteristics. 

 Message 

Prioritization 

Messaging 

Patterns 

Interchangeable 

Serialization 

SoC 

Scalability 

Resource 

quality 

Development 

effort 

Community 

size 

License 

RMI No 
Req.-Rep. 

Sync. Push-Pull 
Yes Yes Medium Medium High Oracle BCL 

XML-RPC No 
Req.-Rep. 

Push-Pull 
No Yes Low Very low Medium Apache v2 

CORBA No 
Req.-Rep. 

Push-Pull 
Yes Yes High Low High Oracle BCL 

ICE No 
Req.-Rep. 

Push-Pull 
Yes Yes High Low Low GPLv2 

Web 

Services 
No 

Req.-Rep. 

Push-Pull 
Yes Yes High Medium Very high Apache v2 

OPCUA No All Yes No Low Very high Medium Commercial 

XMPP No All No No Low High Very high Apache v2 

WAMP No All No Yes Medium Very low Very low Apache v2 

YAMI4 Yes All Yes Yes High Very low Very low GPLv3 

ZeroMQ No All Yes Yes High Low High MPLv2 

For easier reading: Big Advantage, Advantage, Neutral, Disadvantage, Big Disadvantage. 



 

data does not know how often data is sampled by the 

DER supplying the measurement data. Also, the 

Push-Pull pattern, with asynchronous push, is 

important for use cases requiring middleware 

supporting low latency control command. 

Prioritization is important for getting control 

commands delivered within the given timeframe 

when large amounts of measurements are being 

exchanged. 

4.2 Performance Comparison 

With the comparison of binary and string message 

types, the increase in throughput for the middleware 

is up to 40 percent for the majority of the tests as 

shown in figures 4 - 9. But the real gain from using 

binary messages comes from the smaller sizes 

produced by the binary serializers which are up to 5 

times smaller, than the corresponding string 

serializers, as shown by the earlier paper “Smart Grid 

Serialization Comparison” (Petersen et al. 2017). 

Because of the stable bandwidth utilization, the 

gain from the messages being up to 5 times smaller 

with binary serialization means that the throughput is 

increased by up to 5 times. In addition to the up to 40 

percent increase in throughput because of the 

middleware being faster with serialization, the total 

gain from using binary serialized data with an 

interchangeable serialization middleware is up to 7 

times higher throughput. 

The gain from using modern middleware also 

comes from them supporting the Publish-Subscribe 

messaging pattern which results in around 2-3 times 

higher throughput which is shown in figures 4 - 6 by 

comparing the throughput of Publish-Subscribe for 

the 5 middleware that support it to the throughput of 

Request-Reply for all the middleware. 

This gain in throughput for Publish-Subscribe is 

in addition to the advantage of avoiding the problems 

with Request-Reply polling of measurement data, 

which include using the wrong polling interval, which 

will either cause a loss of measurements or waste 

bandwidth by getting the same measurements more 

than once. Even when using the correct polling 

interval, a few messages will be lost, because of the 

communication request not being executed with the 

exact same interval as the hardware polling.  

The average latency shown in figures 10-15 show 

how long it takes for a control command to get to a 

DER on average, but it is only a small part of the 

latency of sending a control command over the 

Internet, as opposed to the comparison, which uses 

Ethernet. Still the results show that asynchronous 

Push-Pull improves the latency by 3-4 times, which 

can clearly be seen in figure 11, where the limit of the 

bandwidth is not reached and the messages are big 

enough for the results to be clear.  

The results also show that interchangeable 

serialization, like with throughput, also improves the 

latency by about 2 times for messages of half the size, 

which is seen in figure 14, by comparing the 10 kB 

messages to the 20 kB messages. Which means that if 

the message size is reduced by 5 times, then the 

latency is improved by 5 times, in addition to the 

gains from the middleware having faster latency for 

binary messages. 

The data loss of the compared middleware is 

minimal and should not affect most use cases, but in 

those few affected cases, middleware with data loss, 

should off course be avoided, which includes XML-

RPC, CORBA, and Web Services, as shown in figure 

16. This is however only for Push-Pull when a stable 

high-bandwidth data connection is used. 

The memory consumption is important for use 

cases using SoC devices and for scaling up to very 

high throughput use cases. It should be noted that the 

measured memory consumption for OPC UA and 

XMPP are for 100 iterations, which means that if they 

could be run with 1000 iterations they would use a lot 

of memory. However, even excluding this difference, 

the memory consumption differs by at least a factor 

of 10, as shown in figure 17. 

4.3 Guidance 

When choosing whether to use middleware advocated 

for by the prevalent communication standards (Web 

Services and XMPP), it should be considered that 

they have terrible performance, to begin with. 

Especially when considering that Web Services does 

not support Publish-Subscribe and XMPP does not 

support interchangeable serialization, which is 

extremely problematic with low bandwidth data 

connections and high throughput use cases.  

The fact that these standards are moving from 

Web Services to XMPP, makes the choice even easier 

with SoC devices because XMPP can only be used for 

use cases with low traffic where the rest of the control 

system uses very little memory, and then still risks 

failure due to running out of memory.  

YAMI4 and ZeroMQ have a strong performance 

and advantages in characteristics, primarily Publish-

Subscribe that makes them strong candidates to use 

for Smart Grid control system. 

ZeroMQ has better performance than YAMI4 and 

can be used for commercial products, while YAMI4 

has lower memory consumption and QoS 

prioritization, which makes YAMI4 better suited for 



 

distributed control on SoC devices with low 

bandwidth data connections, and ZeroMQ better 

suited for centralized or hierarchical control on strong 

hardware with high bandwidth data connections. 

WAMP should also be considered because it uses 

Web Sockets, which is an emerging web standard, 

which is being broadly used, and even though it has 

lower performance, does not support prioritization 

and interchangeable serialization, it does support 

MessagePack which is a quite efficient serialization 

format and might support either more serialization 

formats or interchangeable serialization in the future. 

When it is matured and for use cases not requiring 

prioritization, it could possibly be one of the best 

choices. 

5 CONCLUSION 

The paper shows that using message based 

middleware in the form of YAMI4 or ZeroMQ has 

excellent performance, and provide the best 

characteristics, while other papers (Albano et al. 

2015) just state that message based middleware is the 

obvious choice for Smart Grid communication 

because of it being message based by nature. 

The paper shows the results of comparing a large 

carefully chosen range of middleware, including 

modern middleware, considering Smart Grid 

requirements, the impact of serialization and SoC 

devices, for distributed control with 

recommendations for the choice of middleware. 

Future work could be done by combining 

serialization and communication middleware to show 

the impact of combinations of the two, and to run 

performance tests on high and low bandwidth data 

connections, using constrained and more capable 

hardware. 
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