Understanding Gas to Solid Reactions by means of Controlled Atmosphere TEM

Wagner, Jakob Birkedal; Zhang, Lili; Kling, Jens; Hansen, Thomas Willum

Publication date: 2017

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Understanding Gas to Solid Reactions by means of Controlled Atmosphere TEM

Jakob B. Wagner*1, Lili Zhang1, Jens Kling1, and Thomas W. Hansen1.

1 DTU Danchip, Center for Electron Nanoscopy, Technical University of Denmark, Kgs. Lyngby, Denmark
*E-mail: jakob.wagner@cen.dtu.dk

Keywords: Atmosphere TEM, SWCNT, graphene, metal oxide nanowires, electron beam induced deposition.

A deep understanding of the formation mechanisms of low-dimensional nanostructures from bottom-up processes is of great importance in order to exploit the controllability of the nanostructures and their applications in photovoltaics, electronics, sensors, etc. on an industrial scale.

In order to study the gas to solid reaction mechanisms of the low-dimensional nanostructures, in situ growth of tungsten dots (0-D) [1], copper oxide nanowires (1-D) [2] single-wall carbon nanotubes (SWCNT, 1-D) [3] and graphene (2-D) [4] by means of controlled atmosphere TEM has been performed at DTU over the past years. The high spatial resolution combined with spectroscopic capabilities allow for fundamental insights during the dynamical growth processes.

Here, the electron beam driven growth processes of 0-D deposits and temperature driven growth processes of 1-D and 2-D structures will be discussed based on in situ electron microscopy studies.

Figure 1 shows an example of transition from a gaseous carbon to solid carbon. The elongation process of a SWCNT is shown by a series of images extracted from a movie, acquired during exposure of a Co/MgO sample to a mixture of CO and H2 at elevated temperature.

![Figure 1: Co/MgO sample exposed to a mixture of CO and H2 precursor gas (5:2 in mole ratio, totally 760 Pa) at 700˚C resulting in the formation of a SWCNT [5].](image)